From a physiological standpoint, the lung volumes are either dynamic or static. Both subclasses are measured at different degrees of inspiration or expiration; however, dynamic lung volumes are characteristically dependent on the rate of air flow. The static lung volumes/capacities are further subdivided into four standard volumes (tidal, inspiratory reserve, expiratory reserve, and residual volumes) and four standard capacities (inspiratory, functional residual, vital and total lung capacities). The dynamic lung volumes are mostly derived from vital capacity. While dynamic lung volumes are essential for diagnosis and follow up of obstructive lung diseases, static lung volumes are equally important for evaluation of obstructive as well as restrictive ventilatory defects. This review intends to update the reader with the physiological basis, clinical significance and interpretative approaches of the standard static lung volumes and capacities.
BackgroundPrevious reports assessing the neuroprotective role of nonselective Nitric Oxide synthase (NOS) inhibitor N-nitro-L-arginine-methylester (L-NAME) following cerebral ischemia/reperfusion are contradictory. The aim of this work was to examine the potential benefits of L-NAME on rats subjected to transient focal cerebral ischemia/reperfusion.MethodsThe study involved 30 adult male Wistar rats divided into three groups 10 rats in each: First group was sham-operated and served as a control, a ischemia/reperfusion (I/R) group of rats infused with 0.9% normal saline intraperitoneally 15 minutes prior to 30 minutes of left common carotid artery (CCA) occlusion and a test group infused with L-NAME intraperitoneally 15 minutes prior to ischemia. Neurobehavioral assessments were evaluated and quantitative assessment of malondialdehyde (MDA), Nitric oxide (NO) metabolites and total antioxidant capacity (TAC) in both serum and the affected cerebral hemisphere were achieved.ResultsRats’ neurological deficit and TAC were significantly decreased while NO and MDA were significantly increased in the I/R compared with the control group (P < 0.001). Alternatively in the L-NAME group, neurological deficit and TAC were significantly improved while NO and MDA were significantly decreased compared to I/R group (P < 0.001).ConclusionsL-NAME pretreatment for rats undergoing cerebral ischemia/reperfusion significantly improves neurological deficit while reducing oxidative stress biomarkers in the affected cerebral hemisphere.
BackgroundPrevious heart rate variability (HRV) studies in asthmatic subjects (AS) demonstrate predominance of parasympathetic drive concomitant with low HRV, which is against the general belief that enhanced parasympathetic modulation improves HRV. The aim of this study was to compare patterns of HRV and cardiac autonomic modulations of AS to healthy control subjects (HS).MethodsEighty AS and forty HS were enrolled in the study. Asthma control test and spirometry were used to discriminate uncontrolled (UA) from controlled (CA) asthmatic patients. Natural logarithmic (Ln) scale of total power (TP), very low frequency (VLF), low frequency (LF) and high frequency (HF) were used to evaluate HRV. Normalized low frequency (LF Norm) and high frequency (HF Norm) were used to determine sympathetic and parasympathetic autonomic modulations respectively.ResultsCA patients achieved significantly higher LnTP, LnLF, LnHF and HF Norm but lower LF Norm and LnLF/HF compared with UA patients (p < 0.05). Although CA patients showed increased HRV and augmented vagal modulation compared with HS, these findings were no longer significant following adjustment for mean heart rates and anti-asthma treatment. All measured HRV parameters were not significantly different in UA patients compared with the HS (p > 0.05).ConclusionsCA is associated with enhanced parasympathetic modulations and higher HRV compared with UA. However, neither CA nor UA patients had different autonomic modulations and/or HRV compared with HS.
Background:Although enhanced cholinergic activity of asthmatics has been established early on, little heart rate variability (HRV) studies were done on asthma patients. Previous HRV studies were based on 24-hour recordings and therefore have not considered the extremely labile activity of bronchial asthma.Objective:To evaluate the pattern of autonomic modulations in asthmatic patients based on short-term HRV studies.Materials and Methods:The study involved 100 asthmatic patients with an age range of 20-40 years. Asthma activity was evaluated over the last month prior to patients’ assessment using asthma control test (ACT). Allflow Spirometer was used for assessing pulmonary function, while Biocom 3000 electrocardiography recorder was used for studying 5-minute HRV. Data was analyzed using the Statistical Package for the Social Sciences Software. Heart rate and asthma medications were introduced as a covariate when studied variables were screened for significant correlation between measurements of asthma severity and heart rate variability indices using partial correlations.Results:The level of asthma control correlate positively with both normalized low frequency (LF Norm) and the ratio of low frequency/high frequency (LF/HF) (CC = 0.302, 0.212 and P = 0.002, 0.036, respectively) and negatively with HF Norm (CC = -0.317, P = 0.001). Duration of asthma correlates positively with normalized high frequency (HF Norm) (CC = 0.235, P = 0.020) and negatively with LF Norm (CC = -0.250, P = 0.013).Conclusion:Poor asthma control is associated with lower HRV, depressed sympathetic and enhanced parasympathetic modulations especially in those with longer asthma duration.
Background: Ischemic stroke usually initiates inflammation and oxidative/nitrosative stress leading to neuronal death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.