The transportation system has evolved into a complex cyber-physical system with the introduction of wireless communication and the emergence of connected travelers and connected automated vehicles. Such applications create an urgent need to develop high-fidelity transportation modeling tools that capture the mutual interaction of the communication and transportation systems. This paper addresses this need by developing a high-fidelity, large-scale dynamic and integrated traffic and direct cellullar vehicle-to-vehicle and vehicle-to-infrastructure (collectively known as V2X) modeling tool. The unique contributions of this work are (1) we developed a scalable implementation of the analytical communication model that captures packet movement at the millisecond level; (2) we coupled the communication and traffic simulation models in real-time to develop a fully integrated dynamic connected vehicle modeling tool; and (3) we developed scalable approaches that adjust the frequency of model coupling depending on the number of concurrent vehicles in the network. The proposed scalable modeling framework is demonstrated by running on the Los Angeles downtown network considering the morning peak hour traffic demand (145,000 vehicles), running faster than real-time on a regular personal computer (1.5 h to run 1.86 h of simulation time). Spatiotemporal estimates of packet delivery ratios for downtown Los Angeles are presented. This novel modeling framework provides a breakthrough in the development of urgently needed tools for large-scale testing of direct (C-V2X) enabled applications.
This paper develops a multi-objective eco-routing algorithm (eco- and travel time-optimum routing) for battery electric vehicles (BEVs) and internal combustion engine vehicles (ICEVs) and investigates the network-wide impacts of the proposed multi-objective Nash optimum (user equilibrium) traffic assignment on a large-scale network. Unlike ICEVs, BEVs are more energy efficient on low-speed arterial trips compared with highway trips. Different energy consumption patterns require different eco-routing strategies for ICEVs and BEVs. This study found that single-objective eco-routing could significantly reduce the energy consumption of BEVs but also significantly increase their average travel time. Consequently, the study developed a multi-objective routing model (eco- and travel time-routing) to improve both energy and travel time measures. The model introduced a link cost function that uses the specification of the value of time and the cost of fuel/energy. The simulation study found that multi-objective routing could reduce BEV energy consumption by 13.5%, 14.2%, 12.9%, and 10.7%, as well as ICEV fuel consumption by 0.1%, 4.3%, 3.4%, and 10.6% for “not congested, “slightly congested,”“moderately congested,” and “highly congested” conditions, respectively. The study also found that multi-objective user equilibrium routing reduced the average vehicle travel time by up to 10.1% compared with the standard user equilibrium traffic assignment for highly congested conditions, producing a solution closer to the system optimum traffic assignment. The results indicate that the proposed multi-objective eco-routing strategy can reduce vehicle fuel/energy consumption effectively with minimum impacts on travel times for both BEVs and ICEVs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.