Reproductive aging is the decline of female fertility with age. It is caused by the decrease in the number of growing follicles, resulting from primordial follicle pool depletion. Recently, we have shown that anti-Müllerian hormone (AMH) is produced by growing follicles, and studies in women indicate that serum AMH levels decrease with age and correlate with antral follicle count. However, whether serum AMH levels correlate directly with the size of the primordial follicle pool cannot be determined in women. In this work, we describe studies in mice in which we determined the dynamics of ovarian follicles during aging. Furthermore, we describe the development of a mouse AMH ELISA, allowing us to measure AMH levels in mice, for the first time. We observed that serum AMH levels decline with increasing age, whereas expression of AMH in individual growing follicles, studied by immunohistochemistry, did not change with age. Thus, the decline in serum AMH correlates directly with the decline in the number of growing follicles (r = 0.86, P < 0.0001). We observed that the number of growing follicles correlated with the number of primordial follicles (r = 0.93, P < 0.0001). Similarly, we found a strong correlation between AMH levels and number of primordial follicles (r = 0.83, P < 0.0001). In conclusion, serum AMH levels reflect the size of the primordial follicle pool in aging mice. Therefore, AMH is an excellent marker to assess the quantitative aspect of ovarian reserve, which may be useful for women at risk for early ovarian aging such as survivors of childhood cancers.
The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular growth and function. The effects of murine (m) and ovine (o) GDF9 as well as oBMP15, alone or together, on 3 H-thymidine uptake and progesterone and inhibin production by granulosa cells from rats were determined. Murine GDF9 stimulated thymidine incorporation by granulosa cells whereas oGDF9 and oBMP15 alone had no effect. However, oBMP15 given together with mGDF9 or oGDF9 was very potent in stimulating 3 H-thymidine incorporation by granulosa cells with a greater than 3-fold stimulation compared with any growth factor alone. The synergistic effect of oBMP15 and oGDF9 was almost completely blocked by antibodies generated against these growth factors when administered either alone or in combination. While neither GDF9 (murine or ovine) nor oBMP15 were able to modulate FSH-stimulated progesterone production on their own, FSH-stimulated progesterone production by granulosa cells was potently inhibited when BMP15 and GDF9 were administered together. Immunoreactive ainhibin levels increased more than 15-fold from granulosa cells when BMP15 and GDF9 were given together whereas consistent stimulatory effects of either growth factor alone were not observed. The effects of GDF9 and BMP15, when added together, were different than those observed for the growth factors alone. Therefore, we hypothesize that within the ovary, these oocyte-secreted growth factors co-operate to regulate proliferation and gonadotropin-induced differentiation of granulosa cells in mammals.Reproduction (
The oocyte-secreted polypeptide growth factors, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15, also known as GDF9B) have both been shown to be essential for ovarian follicular development and ovulation rate. In addition, it is known from both in vivo and in vitro studies that these factors co-operate in some manner. To date, most studies examining the in vitro effects of these growth factors have used the rodent model. However, the evidence suggests that these growth factors have somewhat different roles between rodents and ruminants. Therefore, the objectives of these studies were to examine the effects of GDF9 and BMP15, alone and together, on the functions of ovine and bovine granulosa cells under in vitro conditions. Ovine (o)BMP15 given together with murine (m)GDF9 or oGDF9 was more potent in stimulating 3 H-thymidine incorporation by ovine granulosa cells compared with each growth factor alone. For bovine granulosa cells, there appeared to be little or no co-operativity between oBMP15 and oGDF9 as oBMP15 alone was as potent as any combination of the two growth factors in stimulating 3 H-thymidine uptake. The species of origin of GDF9 affected the progesterone response in ovine granulosa cells with mGDF9 stimulating and oGDF9 inhibiting progesterone production. Ovine BMP15 alone had no effect on progesterone production by ovine granulosa cells and these growth factors did not appear to co-operate. FSH-stimulated progesterone production by bovine granulosa cells was most potently inhibited when oBMP15 and murine or ovine GDF9 were administered together. As was observed for progesterone, the species of origin of GDF9 affected inhibin production by ovine granulosa cells where mGDF9 inhibited while oGDF9 stimulated production. Murine GDF9 also inhibited inhibin production from bovine granulosa cells. For both ovine and bovine granulosa cells, BMP15 alone had no effect on inhibin production and there did not appear to be any co-operation between GDF9 and BMP15. These results indicate that the effects of BMP15 and GDF9 varied with respect to the species of origin of the growth factor. Moreover, the effects of GDF9 and BMP15 together were often co-operative and not always the same as those observed for these growth factors alone.Reproduction (
The aim of this study was to investigate the relationship between the concentrations of heavy metals in well water and bioaccumulation of the most abundant metals in chicken tissues in some areas in the province of Mecca Almokaramah, Saudi Arabia. Among the heavy metals (Cd, Zn, Cr, Mn, Cu Hg, Pb and Ni) studied, mercury (Hg) revealed highest in concentration in well waters. The concentration of mercury in ground water, beside in liver, kidney, muscle and blood samples of 10 chickens from each of four poultry-production farms were estimated using atomic absorption spectrophotometer. The present results showed that the kidney followed by liver are the organs with the highest bioaccumulation of mercury in all farm samples. The level of mercury in ground water was 7.06 µg/L. There is no doubt that the relationship between mercury accumulation levels in kidney and those in liver tissues were proportionally correlated and altered with elevation in antioxidant enzyme activities such as serum enzymes aspartate aminotransferase (AST) and serum glutamate pyruvate transaminase (GPT). These elevated enzymatic activities were induced by the level of toxicity. There was a significant elevation in the level of liver and kidney malondialdehyde (MDA), while the activities of antioxidant enzymes superoxide dismutase and catalase (SOD and CAT) were significantly decreased. Biochemical observations were supplemented by histopathological examination of liver and kidney sections.
Estrogen receptor beta (ERβ) is predicted to play an important role in prevention of breast cancer development and metastasis. Phosphorylation of Estrogen receptor alpha (ERα) has been proven to be involved in the progression of breast cancer and it is believed oestrogen receptor beta too phosphorylated at multiple sites within the protein upon ligand binding although the exact function of this site-specific phosphorylation is unknown. Nevertheless it is assumed that the site-specific phosphorylation of ERβ may be involved in the progression of human breast cancer. To test this hypothesis we developed novel monoclonal antibodies using synthetic peptide specific for putative serine phosphorylation site in human ERß (S87). These antibodies tested on human cancerous breast tissue samples provided clear evidence of phosphorylation of ERβ at S87 progressively as cancer advanced. These antibodies could be used in targeting the phosphorylation site which could help in treatment strategies and control of cancer progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.