Modern technology has pushed us into the information age, making it easier to generate and record vast quantities of new data. Datasets can help in analyzing the situation to give a better understanding, and more importantly, decision making. Consequently, datasets, and uses to which they can be put, have become increasingly valuable commodities. This article describes the DroneRF dataset: a radio frequency (RF) based dataset of drones functioning in different modes, including off, on and connected, hovering, flying, and video recording. The dataset contains recordings of RF activities, composed of 227 recorded segments collected from 3 different drones, as well as recordings of background RF activities with no drones. The data has been collected by RF receivers that intercepts the drone's communications with the flight control module. The receivers are connected to two laptops, via PCIe cables, that runs a program responsible for fetching, processing and storing the sensed RF data in a database. An example of how this dataset can be interpreted and used can be found in the related research article “RF-based drone detection and identification using deep learning approaches: an initiative towards a large open source drone database” (Al-Sa'd et al., 2019).
Social distancing is crucial to restrain the spread of diseases such as COVID-19, but complete adherence to safety guidelines is not guaranteed. Monitoring social distancing through mass surveillance is paramount to develop appropriate mitigation plans and exit strategies. Nevertheless, it is a labor-intensive task that is prone to human error and tainted with plausible breaches of privacy. This paper presents a privacy-preserving adaptive social distance estimation and crowd monitoring solution for camera surveillance systems. We develop a novel person localization strategy through pose estimation, build a privacy-preserving adaptive smoothing and tracking model to mitigate occlusions and noisy/missing measurements, compute inter-personal distances in the real-world coordinates, detect social distance infractions, and identify overcrowded regions in a scene. Performance evaluation is carried out by testing the system’s ability in person detection, localization, density estimation, anomaly recognition, and high-risk areas identification. We compare the proposed system to the latest techniques and examine the performance gain delivered by the localization and smoothing/tracking algorithms. Experimental results indicate a considerable improvement, across different metrics, when utilizing the developed system. In addition, they show its potential and functionality for applications other than social distancing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.