The effects of alkali metal treatment on different zeolite catalysts are investigated to better understand the nature of alkali metal species for the selective catalytic alkylation of cumene by ethylene.H-ZSM5, Y and BEA zeolite catalysts with various molar ratios of K, Rb, and Cs are prepared by ion exchange method and calcined at 550 o C in air atmosphere for 2 h. The study was carried out at 300, 350, 400 and 450 °C for reaction times of 2 hours. Cumene conversion was found to increase with all different alkali metal additions and the reaction temperatures. The catalysts are characterized by temperature-programmed desorption of NH3/ or CO2 (TPD), Fourier transform infrared (FT-IR) after pyridine adsorption and inductively-coupled plasma emission spectrometry (i.c.p.e.s.). The FTIR results are compared to Lewis and Broensted acid sites. Furthermore, the relation between atomic size of alkali metal ion exchanged and the basicity of the catalyst is discussed. Among them the 0.025 M Cs exchanged is found as very active catalyst for alkylation of cumene with ethylene resulted in amyl benzene, styrene and ethyl benzene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.