Radio resource management (RRM) plays a major role in Quality of Service (QoS) provisioning for wireless communication systems. The performance of RRM techniques has a direct impact on each user's individual performance and on the overall network performance. Arriving (new and handoff) calls are granted/denied access to the network by the call admission scheme (CAC) based on predefined criteria, taking the network loading conditions into consideration. CAC in wireless networks has been receiving a great deal of attention during the last two decades due to the growing popularity of wireless communications and the central role that CAC plays in QoS provisioning in terms of the signal quality, call blocking and dropping probabilities, packet delay and loss rate, and transmission rate. In the first and second generation of wireless systems, CAC has been developed for a single service environment. In the third generation and beyond wireless systems, multimedia services such as voice, video, data, and audio are to be offered with various QoS profiles. Hence, more sophisticated CAC schemes are developed to cope with these changes. This article provides a comprehensive survey of CAC schemes in modern wireless networks.
We consider an amplify-and-forward (AF) cooperative diversity system where a source node communicates with a destination node directly and indirectly (through multiple relays). In regular multiple-relay cooperative diversity systems, all relay nodes relay the source signal using orthogonal channels (time slots, carriers, or codes) to avoid cochannel interference. Hence, for a regular cooperative diversity network with M relays, we need M+1 channels (one for the direct link and M for the M indirect links). This means that the number of required channels increases linearly with the number of relays. In this paper, we investigate the performance of the best-relay selection scheme where the "best" relay only participates in the relaying. Therefore, two channels only are needed in this case (one for the direct link and the other one for the best indirect link) regardless of the number of relays (M). The best relay is selected as the relay node that can achieve the highest signal-to-noise ratio (SNR) at the destination node. We show that the best-relay selection not only reduces the amount of required resources but also maintains a full diversity order (which is achievable by the regular multiple-relay cooperative diversity system but with much more amount of resources). We derive closed form expressions for tight lower bounds of the symbol error probability and outage probability. Since it is hard to find a closed-form expression for the probability density function (PDF) of SNR of the relayed signal at the destination node, we use an approximate value instead. Then, we find a closed-form expression for the moment generating function (MGF) of the total SNR at the destination. This MGF is used to derive the closed-form expressions of the performance metrics such as the average symbol error probability, the outage probability, the average SNR, the amount of fading, and the SNR moments. Furthermore, we derive the asymptotic behavior of the symbol error probability. From this asymptotic behavior, the diversity order and its dependence on the number of relays (M) can be explicitly determined. Simulation results are also given to verify the analytical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.