The herbal products proved to be more promising antimicrobials even though their antimicrobial activity is milder than commercially available antibiotics. Moreover, herbal drugs may act synergistically with antibiotics to kill microbes. In this study, we aimed to enhance the activity of penicillin against MRSA through combination with the active saponin fraction isolated from the Zygophyllum album plant. Three different types of metabolites (saponins, sterols, and phenolics) have been extracted from Zygophyllum album with ethanol and purified using different chromatographic techniques. The antibacterial activity of crude extract and the separated metabolites were checked against MRSA isolates, Saponin fraction (ZA-S) was only the active one followed by the crude extract. Therefore, the compounds in this fraction were identified using ultra-high-performance liquid chromatography connected to quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS) operated in positive and negative ionization modes. UHPLC/QTOF-MS revealed the presence of major six ursane-type tritepenoidal saponins (Quinovic acid, Quinovic acid 3β-O-β-D-quinovopyranoside, Zygophylloside C, Zygophylloside G, Zygophylloside K and Ursolic acid), in addition to Oleanolic acid. Interaction studies between saponin fraction and penicillin against MRSA were performed through the checkerboard method and time-kill assay. According to checkerboard results, only three combinations showed a fractional inhibitory concentration index less than 0.5 at concentrations of (62.5 + 312.5, 62.5 + 156.25, and 62.5 + 78.125 of penicillin and ZA-S, respectively). Time kill assay results showed that the highest reduction in log10 colony-forming unit (CFU)/ml of initial inoculum of MRSA after 24 h occurred by 3.7 at concentrations of 62.5 + 312.5 (µg/µg)/ml of penicillin and ZA-S, respectively. Thus, the combination between saponin fraction of Zygophyllum album and penicillin with these concentrations could be a potential agent against MRSA that can serve as possible model for new antibacterial drug.
The chicken gut is the habitat to trillions of microorganisms that affect physiological functions and immune status through metabolic activities and host interaction. Gut microbiota research previously focused on inflammation; however, it is now clear that these microbial communities play an essential role in maintaining normal homeostatic conditions by regulating the immune system. In addition, the microbiota helps reduce and prevent pathogen colonization of the gut via the mechanism of competitive exclusion and the synthesis of bactericidal molecules. Under commercial conditions, newly hatched chicks have access to feed after 36–72 h of hatching due to the hatch window and routine hatchery practices. This delay adversely affects the potential inoculation of the healthy microbiota and impairs the development and maturation of muscle, the immune system, and the gastrointestinal tract (GIT). Modulating the gut microbiota has been proposed as a potential strategy for improving host health and productivity and avoiding undesirable effects on gut health and the immune system. Using early-life programming via in ovo stimulation with probiotics and prebiotics, it may be possible to avoid selected metabolic disorders, poor immunity, and pathogen resistance, which the broiler industry now faces due to commercial hatching and selection pressures imposed by an increasingly demanding market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.