Identifying the best Dispatching Rule in order to minimize makespan in a Job Shop Scheduling Problem is a complex task, since no Dispatching Rule is better than all others in different scenarios, making the selection of a most effective rule which is time-consuming and costly. In this paper, a novel approach combining Data Mining, Simulation, and Dispatching Rules is proposed. The aim is to assign in real-time a set of Dispatching Rules to the machines on the shop floor while minimizing makespan. Experiments show that the suggested approach is effective and reduces the makespan within a range of 1–44%. Furthermore, this approach also reduces the required computation time by using Data Mining to determine and assign the best Dispatching Rules to machines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.