A wireless power transfer (WPT) station supplied by an array of solar panels is presented, where solar energy comes from an array of panels with 120 V voltage and 3 A current. It is subjected to maximum power point tracking algorithm optimization on a boost converter, where the duty cycle of the converter is adjusted with an interval chosen between [0.2, 0.8], which is used to iteratively compare between the input and output signals in order to have a maximum power at the output. After regulating the panel array signal through the boost converter, the signal is transferred to an additional middle stage whose role is to raise the frequency until it reaches the resonance frequency of the WPT charger. The device responsible for this task is an inverter based on a class‐E inverter architecture and a GaN transistor technology. The inverter is controlled by a DSP card in a hard‐switch mode and delivers the output signal with a frequency of 10 Mhz, which is the resonance frequency of spiral coils of wireless chargers. Herein, the signal nature can be seen at the terminal of a fixed load with signal optimization through the MPPT algorithm and the HF inverter control mode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.