In an axial piston pump design, the swash plate plays an important role in controlling the displacement of the pump, especially in a closed loop system. In this paper, the axial piston pump is incorporated into the design of a hydraulic regenerative braking system for hybrid vehicles. The pump in this configuration should function in dual mode, as a pump and as a motor. For this to occur, the swash plate should swing in two opposite directions. The swash plate presented in this paper is designed for stability and ease of control. Analytical analysis of torque and forces were conducted using MATLAB software to verify the motion of the swash plate. Furthermore, finite element analysis was also carried out to evaluate the rigidity and stress in the system. The analytical evaluation has shown that as the swash plate angle increases, the required control force and torque increase almost linearly. However, the change of the plate angle was found to have no effect on the force exerted on the X-axis and the torque exerted on the Z-axis.
The modal analysis of piping system in air conditioner (AC) outdoor unit is essential to investigate the vibration properties of the system. In view of the growing significance of numerical finite element (FE) model for vibration behaviour prediction, the AC piping elastic end support characterization has been explored. The axial and radial stiffness variables (k a , k r1 , k r2 ) of the compressor-piping mounting are obtained and represented by dynamic stiffness of compressor grommet. They are obtained from dynamic load deflection test based on compressor operating condition such as excitation frequency and amplitude. The unknown stiffness variables of the other tube end (chassis-piping mounting) are determined by parameter fine tuning. An experimental modal analysis using impact hammer test has also been employed to determine the vibration properties such as natural frequencies, mode shapes and damping ratio of the piping structures. The modal parameters acquisition using SCADAS mobile acquisition system and LMS Impact Testing software is compared with the corresponding simulated modal properties using Abaqus. Most of the simulated natural frequencies achieve good correlation with the measured frequencies and it is reasonably a good prediction model to predict vibration behaviour of AC piping structures. air conditioning outdoor unit, piping, modal analysis, vibration characteristics Citation:Loh S K, Faris W F, Hamdi M, et al. Vibrational characteristics of piping system in air conditioning outdoor unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.