In this paper, a robust blind image watermarking method is proposed for copyright protection of digital images. This hybrid method relies on combining two well-known transforms that are the discrete Fourier transform (DFT) and the discrete cosine transform (DCT). The motivation behind this combination is to enhance the imperceptibility and the robustness. The imperceptibility requirement is achieved by using magnitudes of DFT coefficients while the robustness improvement is ensured by applying DCT to the DFT coefficients magnitude. The watermark is embedded by modifying the coefficients of the middle band of the DCT using a secret key. The security of the proposed method is enhanced by applying Arnold transform (AT) to the watermark before embedding. Experiments were conducted on natural and textured images. Results show that, compared with state-of-the-art methods, the proposed method is robust to a wide range of attacks while preserving high imperceptibility.
Three-dimensional models have been extensively used in several applications including computer-aided design (CAD), video games, medical imaging due to the processing capability improvement of computers, and the development of network bandwidth. Therefore, the necessity of implementing 3D mesh watermarking schemes aiming to protect copyright has increased considerably. In this paper, a blind robust 3D mesh watermarking method based on mesh saliency and wavelet transform for copyright protection is proposed. The watermark is inserted by quantifying the wavelet coefficients using quantization index modulation (QIM) according to the mesh saliency of the 3D semiregular mesh. The synchronizing primitive is the distance between the mesh center and salient points in the descending order. The experimental results show the high imperceptibility of the proposed scheme while ensuring a good robustness against a wide range of attacks including smoothing, additive noise, element reordering, similarity transformations, etc.
Nowadays, three-dimensional meshes have been extensively used in several applications such as, industrial, medical, computer-aided design (CAD) and entertainment due to the processing capability improvement of computers and the development of the network infrastructure. Unfortunately, like digital images and videos, 3-D meshes can be easily modified, duplicated and redistributed by unauthorized users. Digital watermarking came up while trying to solve this problem. In this paper, we propose a blind robust watermarking scheme for three-dimensional semiregular meshes for Copyright protection. The watermark is embedded by modifying the norm of the wavelet coefficient vectors associated with the lowest resolution level using the edge normal norms as synchronizing primitives. The experimental results show that in comparison with alternative 3-D mesh watermarking approaches, the proposed method can resist to a wide range of common attacks, such as similarity transformations including translation, rotation, uniform scaling and their combination, noise addition, Laplacian smoothing, quantization, while preserving high imperceptibility.
In this paper, a robust hybrid watermarking method based on discrete wavelet transform (DWT), discrete cosine transform (DCT), and scale-invariant feature transformation (SIFT) is proposed. Indeed, it is of prime interest to develop robust feature-based image watermarking schemes to withstand both image processing attacks and geometric distortions while preserving good imperceptibility. To this end, a robust watermark is embedded in the DWT-DCT domain to withstand image processing manipulations, while SIFT is used to protect the watermark from geometric attacks. First, the watermark is embedded in the middle band of the discrete cosine transform (DCT) coefficients of the HL1 band of the discrete wavelet transform (DWT). Then, the SIFT feature points are registered to be used in the extraction process to correct the geometric transformations. Extensive experiments have been conducted to assess the effectiveness of the proposed scheme. The results demonstrate its high robustness against standard image processing attacks and geometric manipulations while preserving a high imperceptibility. Furthermore, it compares favorably with alternative methods.
As part of our contributions to researches on the ongoing COVID-19 pandemic worldwide, we have studied the cough changes to the infected people based on the Hidden Markov Model (HMM) speech recognition classification, formants frequency and pitch analysis. In this paper, An HMM-based cough recognition system was implemented with 5 HMM states, 8 Gaussian Mixture Distributions (GMMs) and 13 dimensions of the basic Mel-Frequency Cepstral Coefficients (MFCC) with 39 dimensions of the overall feature vector. A comparison between formants frequency and pitch extracted values is realized based on the cough of COVID-19 infected people and healthy ones to confirm our cough recognition system results. The experimental results present that the difference between the recognition rates of infected and non-infected people is 6.7%. Whereas, the formant analysis variation based on the cough of infected and non-infected people is clearly observed with F1, F3 and F4 and lower for F0 and F2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.