The elastic moduli of a transversely isotropic model granular material, made of slightly polydisperse elastic-frictional spherical beads, in equilibrium along a one-dimensional (oedometric) compression path, as described in the companion paper [M. H. Khalili et al., Phys. Rev. E 95, 032907 (2017)]10.1103/PhysRevE.95.032907, are investigated by numerical simulations. The relations of the five independent moduli to stresses, density, coordination number, fabric and force anisotropies are studied for different internal material states along the oedometric loading path. It is observed that elastic moduli, as in isotropic packs, are primarily determined by the coordination number, with anomalously small shear moduli in poorly coordinated systems, whatever their density. Such states also exhibit faster increasing moduli in compression, and larger off-diagonal moduli and Poisson ratios. Anisotropy affects the longitudinal moduli C_{11} in the axial direction and C_{22} in the transverse directions, and the shear modulus in the transverse plane C_{44}, more than the shear modulus in a plane containing the axial direction C_{55}. The results are compared to available experiments on anisotropic bead packs, revealing, despite likely differences in internal states, a very similar range of stiffness level (linked to coordination), and semiquantitative agreement as regards the influence of anisotropy. Effective medium theory (the Voigt approach) provides quite inaccurate predictions of the moduli. It also significantly underestimates ratios C_{11}/C_{22} (varying between 1 and 2.2) and C_{55}/C_{44} (varying from 1 to 1.6), which characterize elastic anisotropy, except in relatively weakly anisotropic states. The bulk modulus for isotropic compression and the compliance corresponding to stress increments proportional to the previous stress values are the only elastic coefficients to be correctly estimated by available predictive relations. We discuss the influences of fabric and force anisotropies onto elastic anisotropy, showing in particular that the former dominates in sample series that are directly assembled in anisotropic configurations and keep a roughly constant lateral to axial stress ratio under compression.
The behavior of a model granular material, made of slightly polydisperse beads with Hertz-Mindlin elastic-frictional contacts, in oedometric compression (i.e., compression along one axis, with no lateral strain) is studied by grain-level numerical simulations. We systematically investigate the influence of the (idealized) packing process on the microstructure and stresses in the initial, weakly confined equilibrium state, and prepare both isotropic and anisotropic configurations differing in solid fraction Φ and coordination number z. Φ (ranging from maximally dense to moderately loose), z (which might vary independently of Φ in dense systems), fabric and force anisotropy parameters, and the ratio K_{0} of lateral stresses σ_{2}=σ_{3} to stress σ_{1} in the compression direction are monitored in oedometric compression in which σ_{1} varies by more than three orders of magnitude. K_{0} reflects the anisotropy of the assembling process and may remain nearly constant in further loading if the material is already oedometrically compressed (as a granular gas) in the preparation stage. Otherwise, it tends to decrease steadily over the investigated stress range. It is related to force and fabric anisotropy parameters by a simple formula. Elastic moduli, separately computed with an appropriate matrix method, may express the response to very small stress increments about the transversely isotropic well-equilibrated states along the loading path, although oedometric compression proves an essentially anelastic process, mainly due to friction mobilization, with large irreversible effects apparent upon unloading. While the evolution of axial strain ε_{1} and solid fraction Φ (or of the void ratio e=-1+1/Φ) with axial stress σ_{1} is very nearly reversible, especially in dense samples, z is observed to decrease (as previously observed in isotropic compression) after a compression cycle if its initial value was high. K_{0} relates to the evolution of internal variables and may exceed 1 in unloading. The considerably greater irreversibility of oedometric compression reported in sands, compared to our model systems, should signal contact plasticity or damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.