To understand the mechanism governing the postharvest senescence of Zizania latifolia, and the regulatory mechanism induced by 1-methylcyclopropene (1-MCP) during storage at 25°C, physiobiochemical and conjoint analyses of the transcriptome and metabolome were performed. The results indicated that 1-MCP treatment engendered changes in the expression of genes and metabolites during the postharvest storage of Z. latifolia. The 1-MCP treatment maintained a good visual appearance, preserved the cell structure, and membrane integrity of Z. latifolia by keeping the expression of membranes-related lipolytic enzymes (and related genes) low and the amount of phosphatidylethanolamine high. Compared to the control group, 1-MCP treatment enhanced the activities of antioxidant enzymes, resulting in a decrease of reactive oxygen species (ROS) and malondialdehyde (MDA) contents, and thus inhibition of oxidative damage and loss of membrane integrity. In addition, 1-MCP treatment retarded the senescence of Z. latifolia by down-regulating the expression of ethylene biosynthesis-related genes and promoting up-regulation of brassinosteroid insensitive 1 (BRI1) kinase inhibitor 1, calmodulin (CaM), glutathione reductase, jasmonate amino acid synthase, and mitogen-activated protein kinase (MAPK)-related genes. Moreover, 1-MCP retarded Z. latifolia senescence by inducing the activity of ATP-biosynthesis related genes and metabolites. Our findings should facilitate future research on the postharvest storage of Z. latifolia, and could help delay senescence and prolong the storage time for commercial applications.
Plants are naturally sessile and cannot move away from adverse environmental conditions. Environmental stress may induce loss of membrane integrity, which is a seminal feature of premature senescence. Therefore, plants must respond in other ways to protect themselves from abiotic and biotic stresses that involve protein kinases, which are crucial to signal transduction pathways. Protein kinases are involved in the phosphorylation of serine/threonine and tyrosine side chains of proteins. Among these protein kinases, mitogen-activated protein kinase (MAPK) cascade genes are key components of signal transduction pathways that help transduce extracellular signals to intracellular responses in animals, plants, and fungi. Interestingly, reactive oxygen species (ROS) are important and common messengers that are produced in various biotic and abiotic stresses; ROS are known to activate many of the MAPKs. In this review, we highlight the mechanisms of crosstalk between ROS and MAPK cascades in the post-harvest senescence of horticultural products and summarize recent findings about MAPK regulation and functioning in various cellular processes. Figure 1: Response of MAPK cascades activated by ROS in biotic and abiotic stresses. MEKK1 is a common MAPKKK activated by ROS that are produced in response to both biotic and abiotic stresses. MEKK1 activates distinct downstream components of the MAPK cascade in Arabidopsis. Purple and green colors represent biotic and abiotic stresses, respectively. Gouda MHB, et al. OPEN ACCESS Freely available online J Proteomics Bioinform, Volume 13(1) 2-7 aerobic metabolism, but they are now regarded as central players in the complex signaling network of cells [5]. Gouda MHB, et al.
Ready-to-eat wine-pickled mud snails (Bullacta exarata) typically host a large number of microorganisms and are frequently contaminated with pathogenic bacteria during processing, resulting in a higher risk for foodborne illness with consumption. In this study, the decontamination effects of different treatment methods, including the use of ultrasonic cleaning (USC), natural chemicals, and ultra-high pressure (UHP), on the quality and safety of pickled mud snails were investigated by assessing the total viable count (TVC), total volatile base nitrogen (TVB-N) content, thiobarbituric acid-reactive substance (TBARS), and pH value of the products after 12 months of storage at −20 °C. Treatment with 200 W USC for 5 min was the most effective approach for reducing TVC in raw mud snails, with a minimal change in food quality. Natural chemical treatment or UHP treatment significantly inhibited the increase in TVC, pH, and TBARS and TVB-N accumulation compared with the control group; however, their combined treatment had no synergistic effect. In contrast, the combined chemical treatment was more effective in inhibiting changes in the above indices in pickled mud snails than UHP treatment alone or combined chemicals + UHP treatment. In addition, the bacterial diversity of pickled mud snails before and after 12 months of storage at −20 °C was determined using Illumina MiSeq sequencing. Our results indicated that USC combined with natural chemicals can be utilized commercially to maintain the quality and safety of pickled mud snail during storage at −20 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.