In order to investigate the optical properties of wurtzite (Wz) InP nanowires grown on Si(001) by solid source molecular beam epitaxy with the vapour-liquid-solid method, the growth temperature and V/III pressure ratio have been optimized to remove any zinc-blende insertion. These pure Wz InP nanowires have been investigated by photoluminescence (PL), time-resolved PL and PL excitation. Direct observation of the second and third valence band in Wz InP nanowires using PL spectroscopy at high excitation power have been reported and, from these measurements, a crystal field splitting of 74 meV and a spin-orbit interaction energy of 145 meV were extracted. Based on the study of temperature-dependent optical properties, we have performed an investigation of the thermal escape processes of carriers and the electron-phonon coupling strength.
Optical properties of wurtzite InP/InAs/InP core-shell nanowires grown on silicon substrates by solid source molecular beam epitaxy are studied by means of photoluminescence and microphotoluminescence. The growth conditions were optimized to obtain purely wurtzite radial quantum wells emitting in the telecom bands with a radiative lifetime in the 5-7 ns range at 14 K. Optical studies on single nanowires reveal that the polarization is mainly parallel to the growth direction. A 20-fold reduction of the photoluminescence intensity is observed between 14 and 300 K confirming the very good quality of the nanowires.
InP nanowires grown on silicon substrate are investigated using time-resolved spectroscopy. A strong modification of the exciton lifetime is observed (from 0.11 to 1.2 ns) when the growth temperature is increased from 340 °C to 460 °C. This strong dependence is not related to the density of zinc-blende insertions in the wurtzite nanowires or to the wurtzite exciton linewidth. The excitation power dependence of the lifetime and linewidth is investigated, and these results allow us to interpret the growth temperature dependence on the lifetime as a consequence of the reduction of the surface recombination velocity with the growth temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.