Context-aware applications have been gaining huge interest in the last few years. With cell phones becoming ubiquitous computing devices, cell phone localization has become an important research problem. In this paper, we present CellSense, a probabilistic RSSI-based fingerprinting location determination system for GSM phones. We discuss the challenges of implementing a probabilistic fingerprinting localization technique in GSM networks and present the details of the CellSense system and how it addresses the challenges. To evaluate our proposed system, we implemented CellSense on Android-based phones. Results for two different testbeds, representing urban and rural environments, show that CellSense provides at least 23.8% enhancement in accuracy in rural areas and at least 86.4% in urban areas compared to other RSSI-based GSM localization systems. This comes with a minimal increase in computational requirements. We also evaluate the effect of changing the different system parameters on the accuracy-complexity tradeoff.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.