In Bahrain, like the other Gulf Cooperation Council (GCC) countries, desalination is inevitable to meet the escalating municipal water demands. However, desalination is associated with many environmental effects, which need to be minimized to their lowest possible limits. One of the major environmental concerns of desalination in the Arabian Gulf region is the local and regional effects of the outfall areas on the marine environment. In this study, the outfall area of a government-owned MSF desalination plant is characterized in terms of temperature and salinity. The spatial extent of the plume of the desalination plant's effluent is mapped by a field survey conducted during the winter season around the plant's outfall area at 25 cm and 1 m below the water surface and at low and high tide. The results of the characterization indicated that the temperature of the brine discharged to the outfall was 37˚C, higher than the ambient seawater temperature by 16.5˚C at high tide and 17.5˚C at low tide, and that the extent of the mixing zone area was found at about 260 m and 1 km from the outfall point at high tide and low tide, respectively. The results also showed that brine thermal discharge is not in compliance with the standard limits (<3˚C from ambient within 100 m of shoreline) both at high and low tides with differences reaching more than 10˚C. In terms of salinity, the brine discharged salinity was 56.2 parts per trillion (ppt) compared to an ambient seawater salinity of 43.2 ppt. The maximum salinity measured near the outfall point was 56 ppt at low tide and 51 ppt at high tide, both at 1 m below the surface water column. It is found that the current design structure consisting of two jetties to isolate the desalination plant outfall area from its surroundings is not environmentally sound, as the current surface/inter-tidal outfall location is susceptible to significant increases in salinity and temperature around the outfall area due to the limited flushing it experiences. Therefore, the current design of the outfall area needs to be reviewed to ensure meeting brine discharge regulations and mitigate its impact on the surrounding marine area. The spatial extent of the brine plume can be minimized by building a discharge area further offshore at a sub-tidal location where turbulent flow exists to minimize the spatial extent and intensity of the brine plume. It is recommended that this characterization be extended to all desalination plants in Bahrain, and a regular monitoring program, which should also include selected biological communities and organisms of ecological relevance, be established around the desalination plants outfall areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.