The COVID-19 pandemic has urged for the repurposing of existing drugs for rapid management and treatment. Renin inhibitors down regulation of ACE2, which is an essential receptor for SARS-CoV-2 infection that is responsible for COVID-19, in addition to their ability to act as protease inhibitors were encouraging aspects for their investigation as possible inhibitors of main protease of SARS-CoV-2 via computational studies. A Pharmacophore model was generated using the newly released SARS-COV-2 main protease inhibitors. Virtual screening was performed on renin inhibitors, and Drug likeness filter identified remikiren and 0IU as hits. Molecular docking for both compounds showed that the orally active renin inhibitor remikiren (Ro 42–5892) of Hoffmann–La Roche exhibited good molecular interaction with Cys145 and His41 in the catalytic site of SARS-CoV-2 main protease. Molecular dynamics simulation suggested that the drug is stable in the active site of the enzyme.
SARS-CoV-2 pandemic in the end of 2019 led to profound consequences on global health and economy. Till producing successful vaccination strategies, the healthcare sectors suffered from the lack of effective therapeutic agents that could control the spread of infection. Thus, academia and the pharmaceutical sector prioritise SARS-CoV-2 antiviral drug discovery. Here, we exploited previous reports highlighting the anti-SARS-CoV-2 activities of isatin-based molecules to develop novel triazolo-isatins for inhibiting main protease (Mpro) of the virus, a crucial enzyme for its replication in the host cells. Particularly, sulphonamide
6b
showed promising inhibitory activity with an IC
50
= 0.249 µM. Additionally,
6b
inhibited viral cell proliferation with an IC
50
of 4.33 µg/ml, and was non-toxic to VERO-E6 cells (CC50 = 564.74 µg/ml) displaying a selectivity index of 130.4.
In silico
analysis of
6b
disclosed its ability to interact with key residues in the enzyme active site, supporting the obtained
in vitro
findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.