19 pagesWe consider the general degenerate hyperbolic-parabolic equation: \begin{equation}\label{E}\tag{E} u_t+\div f(u)-\Delta\phi(u)=0 \mbox{ in } Q = (0,T)\times\Omega,\;\;\;\; T>0,\;\;\;\Omega\subset\mathbb R^N ; \end{equation} with initial condition and the zero flux boundary condition. Here $\phi$ is a continuous non decreasing function. Following [B\"{u}rger, Frid and Karlsen, J. Math. Anal. Appl, 2007], we assume that $f$ is compactly supported (this is the case in several applications) and we define an appropriate notion of entropy solution. Using vanishing viscosity approximation, we prove existence of entropy solution for any space dimension $N\geq 1$ under a partial genuine nonlinearity assumption on $f$. Uniqueness is shown for the case $N=1$, using the idea of [Andreianov and Bouhsiss, J. Evol. Equ., 2004], nonlinear semigroup theory and a specific regularity result for one dimension
This note is devoted to the study of the finite volume methods used in the discretization of degenerate parabolic-hyperbolic equation with zero-flux boundary condition. The notion of an entropy-process solution, successfully used for the Dirichlet problem, is insufficient to obtain a uniqueness and convergence result because of a lack of regularity of solutions on the boundary. We infer the uniqueness of an entropy-process solution using the tool of the nonlinear semigroup theory by passing to the new abstract notion of integral-process solution. Then, we prove that numerical solution converges to the unique entropy solution as the mesh size tends to 0.
We revisit the Cauchy-Dirichlet problem for degenerate parabolic scalar conservation laws. We suggest a new notion of strong entropy solution. It gives a straightforward explicit characterization of the boundary values of the solution and of the flux, and leads to a concise and natural uniqueness proof, compared to the one of the fundamental work [J. Carrillo, Arch. Ration. Mech. Anal., 1999]. Moreover, general dissipative boundary conditions can be studied in the same framework. The definition makes sense under the specific weak trace-regularity assumption. Despite the lack of evidence that generic solutions are trace-regular (especially in space dimension larger than one), the strong entropy formulation may be useful for modeling and numerical purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.