This study investigated the role of K(ATP) channels in morphine-induced antinociception and hepatic oxidative stress in acute and inflammatory pain. The K(ATP) channel modulators (K(ATP) channel opener, diazoxide 100 mg/kg, p.o, and K(ATP) channel blocker, glibenclamide, 3 mg/kg i.p.) were administered with morphine (80 mg/kg, i.p.). Antinociception was assessed by the tail-flick and formalin tests in rats and measured by the area under the curve values and the maximum percent effect for 3 h. The indices of hepatic oxidative stress: glutathione, glutathione peroxidase, and malondialdehyde were then determined in the liver homogenates obtained from the treated animals. In both tests, glibenclamide antagonized morphine-induced antinociception, whereas diazoxide augmented it in the tail-flick test only. In the formalin test, glibenclamide alone has a significant hyperalgesic effect, whereas diazoxide decreased the number of flinches. Coadministration of glibenclamide with morphine antagonized the hepatotoxic effect of morphine in both animal models. In the tail-flick test, glibenclamide administered alone significantly increased malondialdehyde's level. Coadministration of diazoxide with morphine increased glutathione level in the formalin test. Diazoxide administered alone exacerbated the hepatic oxidative stress in both animal models. These findings suggest a role of K(ATP) channel modulators on morphine-induced antinociception and hepatic oxidative stress. The administration of glibenclamide may prevent morphine-induced hepatotoxicity. The effectiveness of diazoxide in the management of pain is limited due to its deleterious effect on the liver. However, the interaction of the K(ATP) channel modulators with morphine depends on the differential sensitivity to the pain stimulus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.