Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are nonbiodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metalpolluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
A compact ultra-wideband dual-polarized Vivaldi antenna is proposed for full polarimetric ground-penetrating radar (GPR) applications. A shared-aperture configuration comprising four Vivaldi elements for orthogonal polarizations is designed to reduce the low-end operating frequency and improve the port isolation with a compact antenna size. The directivity of the antenna is enhanced by the oblique position of the radiators and the implementation of a square loop reflector. Experimental results demonstrate that the antenna has very good impedance matching, port isolation, and dual-polarized radiation performance, with low dispersion characteristics across band of interest from 0.4 GHz to 3.0 GHz. GPR measurements with the designed antenna show that the antenna maintains good detection capability even for objects buried in a highly conductive soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.