Rare metal mineralization of Sn, Nb-Ta and W is encountered in the Gebel Dihmit area (GDA), southeastern Aswan, Egypt. The mineralization is related to muscovite granites and their pegmatite derivatives. The pegmatites are divided into three types according to their main mineral assemblages: K-feldspar-muscovite-tourmaline, K-feldspar-albite-muscovite and albite-K-feldspar-lepidolite veins. Petrogenetic studies indicate that Sn and Nb-Ta mineralization extends from the late-magmatic stage to the pegmatite and hydrothermal stages of the (GDA) suite. The albite-K-feldspar-lepidolite granite is composed dominantly of albite, lepidolote, and quartz, with topaz, K-feldspar and amblygonite. The accessory minerals are zircon, monazite, pollucite, columbite-tantalite, microlite and Ta-rich cassiterite. Phenocrysts of quartz, topaz and K-feldspar contain abundant inclusions of albite laths and occasional lepidolite crystals along growth zones (snowball texture), indicating simultaneous crystallization from a subsolvus, residual magma. The origin of the pegmatites is attributed to extreme differentiation by fractional crystallization of a granitic magma. The economic potential for rare metals was evaluated in the geochemical discrimination diagrams. Accordingly, some of the pegmatites are not only highly differentiated in terms of alkalis, but also the promising targets for small-scale Ta and, to a less extent, Sn. The pegmatites also provide the first example of Fe-Mn and Nb-Ta fractionation in successive generations of granites to cassiterite-bearing pegmatites, which perfectly exhibit similar fractionation trends established for primary columbite-tantalite in the corresponding categories of pegmatites. Uranium and Th of magmatic origin are indicated by the presence of thorite and allanite, whereas evidence of hydrothermal mineralization is the alteration of rock-foring minerals such as feldspar and the formation of secondary minerals such as uranophane..
The Egyptian younger granites are characterized by the presence of more than 14 exposures of raremetal granites. The studied granites are included into three geological modes of occurrence. The first includes Igla and Abu Dabbab plutons, which occur as small stocks of circular, ovoid, or apophyses and leucocratic outcrops. The second comprises the plugs and dyke-like bodies intruded peralkaline granites of Bir Um Hibal. The third includes Homrit Waggat and Muweilha plutons. They cover small areas and exhibit obvious pervasive post magmatic alterations. The petrographic and mineralogical studies are confirmed by the geochemical investigations indicating that the concerned rare-metal granites being broadly distinguished into magmatic and metasomatic associations. The magmatic granite associations are further subdivided into two subgroups; i) peraluminous granites (Li-mica rich) including Igla and Abu Dabbab plutons and ii) peralkaline granites including Um Hibal pluton. The studied peraluminous granites are generally enriched in Nb, Rb, Ta, Li, F, Y, Zr, U and Th elements. The peralkaline granites are enriched in K 2 O oxide as well as Zr, Nb, F, U, Th and Ta elements. On the other hand, the metasomatic granite associations are represented by Homrit Waggat and Muweilha plutons. They are characterized by high contents of Na 2 O oxide as well as Nb, Ta, U, Th and Rb elements. Igla pluton has highest average U & Th contents (42 ppm & 58 ppm respectively), while Um Hibal pluton has lowest average U & Th contents (14 ppm & 26 ppm respectively)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.