Perovskite solar cells are a hot topic of photovoltaic research, reaching, in few years, an impressive efficiency (25.5%), but their long-term stability still needs to be addressed for industrial production. One of the most sizeable reasons for instability is the doping of the Hole Transporting Material (HTM), being the salt commonly employed as a vector bringing moisture in contact with perovskite film and destroying it. With this respect, the research focused on new and stable “dopant-free” HTMs, which are inherently conductive, being able to effectively work without any addition of dopants. Notwithstanding, they show impressive efficiency and stability results. The dopant-free polymers, often made of alternated donor and acceptor cores, have properties, namely the filming ability, the molecular weight tunability, the stacking and packing peculiarities, and high hole mobility in absence of any dopant, that make them very attractive and a real innovation in the field. In this review, we tried our best to collect all the dopant-free polymeric HTMs known so far in the perovskite solar cells field, providing a brief historical introduction, followed by the classification and analysis of the polymeric structures, based on their building blocks, trying to find structure–activity relationships whenever possible. The research is still increasing and a very simple polymer (PFDT–2F–COOH) approaches PCE = 22% while some more complex ones overcome 22%, up to 22.41% (PPY2).
The commercialization of perovskite solar cells (PSCs) has seen an important limitation in the instability that afflicts the hole-transporting layer (HTL), namely, spiro-OMeTAD, used in high-efficiency devices. The latter is, in turn, relatively expensive, undermining the sustainability of the device. Its replacement with polymeric scaffolds, such as poly(3hexylthiophene) (P3HT), will solve these issues. In this work, we adopted various sustainable synthetic methods to obtain four different homemade P3HTs with different molecular weights (MWs) and regioregularities (RRs), leading to different structural properties. They are implemented as HTLs in PSCs, and the effect of their properties on the efficiency and thermal stability of devices is thoroughly discussed. The highest efficiency is obtained with the highest MW and low-RR polymer (17.6%) owing to the more sustainable approach, but a very promising value is also reached with a lower-MW but fully regioregular polymer (15%). Finally, large-area devices with an efficiency of 16.7%, fabricated with a high-MW P3HT, show more than 1000 h (T80 = 1108 h) of stability under accelerated thermal stress tests (85 °C) out of glovebox while keeping over 85% of the initial efficiency of an unencapsulated device after more than 3000 min under continuous light soaking (AM 1.5G).
Since the introduction of Perovskite Solar Cells, their photovoltaic efficiencies have grown impressively, reaching over 25%. Besides the exceptional efficiencies, those solar cells need to be improved to overcome some concerns, such as their intrinsic instability when exposed to humidity. In this respect, the development of new and stable Hole Transporting Materials (HTMs) rose as a new hot topic. Since the doping agents for common HTM are hygroscopic, they bring water in contact with the perovskite layer, thus deteriorating it. In the last years, the research focused on “dopant-free” HTMs, which are inherently conductive without any addition of dopants. Dopant-free HTMs, being small molecules or polymers, have still been a relatively small set of compounds until now. This review collects almost all the relevant organic dopant-free small-molecule HTMs known so far. A general classification of HTMs is proposed, and structure analysis is used to identify structure–property relationships, to help researchers to build better-performing materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.