Diabetic patients need ongoing surveillance, but this involves high costs for the government and family. The combined use of information and communication technologies (ICTs), artificial intelligence and smart devices can reduce these costs, helping the diabetic patient. This paper presents an intelligent architecture for the surveillance of diabetic disease that will allow physicians to remotely monitor the health of their patients through sensors integrated into smartphones and smart portable devices. The proposed architecture includes an intelligent algorithm developed to intelligently detect whether a parameter has exceeded a threshold, which may or may not involve urgency. To verify the proper functioning of this system, we developed a small portable device capable of measuring the level of glucose in the blood for diabetics and body temperature. We designed a secure mechanism to establish a wireless connection with the smartphone.
This paper presents an original elliptical microstrip patch antenna is proposed for Ku/K band satellite applications. The proposed antenna has a simple structure, small size with dimensions of about 10×12×1.58 mm³. The antenna has been designed and simulated on an FR4 substrate with dielectric constant 4.4 and thickness of 1.58 mm. The design is simulated by two different electromagnetic solvers. The results from the measured data show that the antenna has two resonant frequencies that define 2 bandwidths, defined by a return loss of less than -10 dB, and are: (14.44 GHz, 829 MHz) and (21.05 GHz, 5126 MHz),with the gain 5.59 dB and 5.048 dB respectively. The proposed antenna can be used in many applications such as in satellite, and wireless communications.
In this paper a new design of a dual small band small elliptical microstrip antenna is proposed for Ku and K band satellite applications. The basic antenna structure is an elliptical patch with inset-feed, which is modified by adding two rectangular slots in the radiation patch. The proposed antenna has been designed and fabricated on 1.58 mm thick FR4 substrate whose dielectric constant is 4.4, with dimensions of about 10×12×1.58 mm³. The antenna structure was validated using two different electromagnetic solvers and by measuring the results using a Vector Network Analyzer (VNA). The measured and simulated results show two resonant frequencies that define two bandwidths. Moreover, the proposed antenna frequency bands and the consistent and symmetrical radiation patterns make it an appropriate candidate for many applications such as the Ku/K band satellite application and wireless communications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.