Agricultural landscapes presently cover about 46 % of earth terrestrial surface. This cultivated area is decreasing, whereas the global food demand is projected to increase up to 70 % in 2050. The intensification of agriculture is not a solution to this food issue because intensive agriculture has often resulted in pollution and loss of biodiversity. On the other hand, mechanistic models with optimization algorithms can be used to design alternative land uses for sustainable agriculture. Here, we present a review of metaheuristics for land use optimization reported in 50 articles including 38 case studies carried out in 16 countries. Our main conclusions are: 1) the success of metaheuristics is problem-dependent. In general, metaheuristics enable search to escape from local optima and find a good global approximation solution.2) The choice of a given metaheuristic for solving a given problem seems to be driven by its historical use in a research team and by its popularity outside the metaheuristics research community, rather than by the characteristics of the problems to be solved and by the latest results from the metaheuristics research community. 3) Stakeholders of land use are increasingly involved at different levels of the land use optimization procedure and multi-actors decision-making methods are necessary to find trade-offs between their competing interests. 4) A future challenge is the use of parallelization techniques along with the hybridization of different metaheuristics or of metaheuristics with other optimization methods.
Drought stress is a major abiotic stress threatening plant and crop productivity. In case of fleshy fruits, understanding mechanisms governing water and carbon accumulations and identifying genes, QTLs and phenotypes, that will enable trade-offs between fruit growth and quality under Water Deficit (WD) condition is a crucial challenge for breeders and growers. In the present work, 117 recombinant inbred lines of a population of Solanum lycopersicum were phenotyped under control and WD conditions. Plant water status, fruit growth and composition were measured and data were used to calibrate a process-based model describing water and carbon fluxes in a growing fruit as a function of plant and environment. Eight genotype-dependent model parameters were estimated using a multiobjective evolutionary algorithm in order to minimize the prediction errors of fruit dry and fresh mass throughout fruit development. WD increased the fruit dry matter content (up to 85%) and decreased its fresh weight (up to 60%), big fruit size genotypes being the most sensitive. The mean normalized root mean squared errors of the predictions ranged between 16–18% in the population. Variability in model genotypic parameters allowed us to explore diverse genetic strategies in response to WD. An interesting group of genotypes could be discriminated in which (i) the low loss of fresh mass under WD was associated with high active uptake of sugars and low value of the maximum cell wall extensibility, and (ii) the high dry matter content in control treatment (C) was associated with a slow decrease of mass flow. Using 501 SNP markers genotyped across the genome, a QTL analysis of model parameters allowed to detect three main QTLs related to xylem and phloem conductivities, on chromosomes 2, 4, and 8. The model was then applied to design ideotypes with high dry matter content in C condition and low fresh mass loss in WD condition. The ideotypes outperformed the RILs especially for large and medium fruit-size genotypes, by combining high pedicel conductance and high active uptake of sugars. Interestingly, five small fruit-size RILs were close to the selected ideotypes, and likely bear interesting traits and alleles for adaptation to WD.
Process-based models are effective tools to predict the phenotype of an individual in different growing conditions. Combined with a quantitative trait locus (QTL) mapping approach, it is then possible to predict the behavior of individuals with any combinations of alleles. However the number of simulations to explore the realm of possibilities may become infinite. Therefore, the use of an efficient optimization algorithm to intelligently explore the search space becomes imperative. The optimization algorithm has to solve a multi-objective problem, since the phenotypes of interest are usually a complex of traits, to identify the individuals with best tradeoffs between those traits. In this study we proposed to unroll such a combined approach in the case of peach fruit quality described through three targeted traits, using a process-based model with seven parameters controlled by QTL. We compared a current approach based on the optimization of the values of the parameters with a more evolved way to proceed which consists in the direct optimization of the alleles controlling the parameters. The optimization algorithm has been adapted to deal with both continuous and combinatorial problems. We compared the spaces of parameters obtained with different tactics and the phenotype of the individuals resulting from random simulations and optimization in these spaces. The use of a genetic model enabled the restriction of the dimension of the parameter space toward more feasible combinations of parameter values, reproducing relationships between parameters as observed in a real progeny. The results of this study demonstrated the potential of such an approach to refine the solutions toward more realistic ideotypes. Perspectives of improvement are discussed.
The development of an hydrogen economy will need a transportation infrastructure to deliver hydrogen from production sites to end users. For the specific case of hydrogen, pipelines networks compete with other hydrogen carriers: compressed gas trucks and liquid cryogenic trucks. In this paper, we deal with the determination of the temporal deployment of a new hydrogen transportation infrastructure. Starting from the expected final horizon pipelines network, we propose a backward heuristic approach. The proposed approach is illustrated on a French regional hydrogen transportation tacking into account two scenarios for hydrogen penetration into the fuel markets. We showed that for the mid term perspective and low market share, the trucks are the most economical options. However, for the long term, the pipeline option is considered as a economical viable option as soon as the hydrogen energy market share for the car fueling market reaches 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.