The examples of TM presented in this article support the argument for the formation of more TM networks on the local and regional levels. Financial constraints for TM can be overcome by pooling government, academic, private, and industry resources in an organized fashion with oversight by a lead TM researcher.
Introduction: Many orthopaedic procedures require drilling of bone, especially fracture repair cases. Bone drilling results in heat generation due to the friction between the bone and the drill bit. A high level heat generation kills bone cells. Bone cell death results in resorption of bone around bone screws. Materials and methods: Many points of view of orthopaedists and neurosurgeons based upon on previous practices and clinical experience are presented. Results: Several potential complications are discussed and highlighted that lead to thermal necrosis. Discussion: Even in the face of growing evidence as to the negative effects of heatinduction during drilling, simple and effective methods for monitoring and cooling in realtime are not in widespread usage today. For that purpose, we propose some suggestions for the future of bone drilling, taking note of recent advances in autonomous robotics, intelligent systems, and computer simulation techniques. Conclusions: These advances in prevention of thermal necrosis during bone drilling surgery are expected to reduce the risk of patient injury and costs for the health service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.