We study a financial model with one risk-free and one risky asset subject to liquidity risk and price impact. In this market, an investor may transfer funds between the two assets at any discrete time. Each purchase or sale policy decision affects the price of the risky asset and incurs some fixed transaction cost. The objective is to maximize the expected utility from terminal liquidation value over a finite horizon and subject to a solvency constraint. This is formulated as an impulse control problem under state constraint and we prove that the value function is characterized as the unique constrained viscosity solution to the associated quasi-variational Hamilton-Jacobi-Bellman inequality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.