Affective computing is a field of study that integrates human affects and emotions with artificial intelligence into systems or devices. A system or device with affective computing is beneficial for the mental health and wellbeing of individuals that are stressed, anguished, or depressed. Emotion recognition systems are an important technology that enables affective computing. Currently, there are a lot of ways to build an emotion recognition system using various techniques and algorithms. This review paper focuses on emotion recognition research that adopted electrocardiograms (ECGs) as a unimodal approach as well as part of a multimodal approach for emotion recognition systems. Critical observations of data collection, pre-processing, feature extraction, feature selection and dimensionality reduction, classification, and validation are conducted. This paper also highlights the architectures with accuracy of above 90%. The available ECG-inclusive affective databases are also reviewed, and a popularity analysis is presented. Additionally, the benefit of emotion recognition systems towards healthcare systems is also reviewed here. Based on the literature reviewed, a thorough discussion on the subject matter and future works is suggested and concluded. The findings presented here are beneficial for prospective researchers to look into the summary of previous works conducted in the field of ECG-based emotion recognition systems, and for identifying gaps in the area, as well as in developing and designing future applications of emotion recognition systems, especially in improving healthcare.
Machine learning is emerging nowadays as an important tool for decision support in many areas of research. In the field of education, both educational organizations and students are the target beneficiaries. It facilitates the educational sector in predicting the student’s outcome at the end of their course and for the students in deciding to choose a suitable course for them based on their performances in previous exams and other behavioral features. In this study, a systematic literature review is performed to extract the algorithms and the features that have been used in the prediction studies. Based on the search criteria, 2700 articles were initially considered. Using specified inclusion and exclusion criteria, quality scores were provided, and up to 56 articles were filtered for further analysis. The utmost care was taken in studying the features utilized, database used, algorithms implemented, and the future directions as recommended by researchers. The features were classified as demographic, academic, and behavioral features, and finally, only 34 articles with these features were finalized, whose details of study are provided. Based on the results obtained from the systematic review, we conclude that the machine learning techniques have the ability to predict the students’ performance based on specified features as categorized and can be used by students as well as academic institutions. A specific machine learning model identification for the purpose of student academic performance prediction would not be feasible, since each paper taken for review involves different datasets and does not include benchmark datasets. However, the application of the machine learning techniques in educational mining is still limited, and a greater number of studies should be carried out in order to obtain well-formed and generalizable results. We provide future guidelines to practitioners and researchers based on the results obtained in this work.
Photovoltaic (PV) systems have become one of the most promising alternative energy sources, as they transform the sun’s energy into electricity. This can frequently be achieved without causing any potential harm to the environment. Although their usage in residential places and building sectors has notably increased, PV systems are regarded as unpredictable, changeable, and irregular power sources. This is because, in line with the system’s geographic region, the power output depends to a certain extent on the atmospheric environment, which can vary drastically. Therefore, artificial intelligence (AI)-based approaches are extensively employed to examine the effects of climate change on solar power. Then, the most optimal AI algorithm is used to predict the generated power. In this study, we used machine learning (ML)-based algorithms to predict the generated power of a PV system for residential buildings. Using a PV system, Pyranometers, and weather station data amassed from a station at King Khalid University, Abha (Saudi Arabia) with a residential setting, we conducted several experiments to evaluate the predictability of various well-known ML algorithms from the generated power. A backward feature-elimination technique was applied to find the most relevant set of features. Among all the ML prediction models used in the work, the deep-learning-based model provided the minimum errors with the minimum set of features (approximately seven features). When the feature set is greater than ten features, the polynomial regression model shows the best prediction, with minimal errors. Comparing all the prediction models, the highest errors were associated with the linear regression model. In general, it was observed that with a small number of features, the prediction models could minimize the generated power prediction’s mean squared error value to approximately 0.15.
The process of automating the question generation consists of many tasks. Selecting the target content (what to ask), question type (who, why, how) and actual question generation are the major issue of Automatic Question Generation. Certain definitions retrieved is available in Wikipedia either directly or is the outcome of executing set of sub queries for each key phrase categories The problem in the existing system is that some of the definition sentences which are taken out from Wikipedia were implicit. The proposed system overcomes the problems by using Supervised Learning Approach, Naïve Bayes method. It also extends its work to use Summarization, Noun Filtering and Question Generation in the aim of generating semantically correct questions.
Rivers are the main sources of freshwater supply for the world population. However, many economic activities contribute to river water pollution. River water quality can be monitored using various parameters, such as the pH level, dissolved oxygen, total suspended solids, and the chemical properties. Analyzing the trend and pattern of these parameters enables the prediction of the water quality so that proactive measures can be made by relevant authorities to prevent water pollution and predict the effectiveness of water restoration measures. Machine learning regression algorithms can be applied for this purpose. Here, eight machine learning regression techniques, including decision tree regression, linear regression, ridge, Lasso, support vector regression, random forest regression, extra tree regression, and the artificial neural network, are applied for the purpose of water quality index prediction. Historical data from Indian rivers are adopted for this study. The data refer to six water parameters. Twelve other features are then derived from the original six parameters. The performances of the models using different algorithms and sets of features are compared. The derived water quality rating scale features are identified to contribute toward the development of better regression models, while the linear regression and ridge offer the best performance. The best mean square error achieved is 0 and the correlation coefficient is 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.