The one-dimensional Ising model with various boundary conditions is considered. Exact expressions for the thermodynamic and magnetic properties of the model using different kinds of boundary conditions [Dirichlet (D), Neumann (N), and a combination of Neumann–Dirichlet (ND)] are presented in the absence (presence) of a magnetic field. The finite-size scaling functions for internal energy, heat capacity, entropy, magnetisation, and magnetic susceptibility are derived and analysed as function of the temperature and the field. We show that the properties of the one-dimensional Ising model is affected by the finite size of the system and the imposed boundary conditions. The thermodynamic limit in which the finite-size functions approach the bulk case is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.