The advent of Next-Generation Sequencing (NGS) technologies has opened new perspectives in deciphering the genetic mechanisms underlying complex diseases. Nowadays, the amount of genomic data is massive and substantial efforts and new tools are required to unveil the information hidden in the data. The Genomic Data Commons (GDC) Data Portal is a platform that contains different genomic studies including the ones from The Cancer Genome Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiatives, accounting for more than 40 tumor types originating from nearly 30000 patients. Such platforms, although very attractive, must make sure the stored data are easily accessible and adequately harmonized. Moreover, they have the primary focus on the data storage in a unique place, and they do not provide a comprehensive toolkit for analyses and interpretation of the data. To fulfill this urgent need, comprehensive but easily accessible computational methods for integrative analyses of genomic data that do not renounce a robust statistical and theoretical framework are required. In this context, the R/Bioconductor package TCGAbiolinks was developed, offering a variety of bioinformatics functionalities. Here we introduce new features and enhancements of TCGAbiolinks in terms of i) more accurate and flexible pipelines for differential expression analyses, ii) different methods for tumor purity estimation and filtering, iii) integration of normal samples from other platforms iv) support for other genomics datasets, exemplified here by the TARGET data. Evidence has shown that accounting for tumor purity is essential in the study of tumorigenesis, as these factors promote confounding behavior regarding differential expression analysis. With this in mind, we implemented these filtering procedures in TCGAbiolinks. Moreover, a limitation of some of the TCGA datasets is the unavailability or paucity of corresponding normal samples. We thus integrated into TCGAbiolinks the possibility to use normal samples from the Genotype-Tissue Expression (GTEx) project, which is another large-scale repository cataloging gene expression from healthy individuals. The new functionalities are available in the TCGAbiolinks version 2.8 and higher released in Bioconductor version 3.7.
Background: Genomic initiatives such as The Cancer Genome Atlas (TCGA) contain data from-omics profiling of thousands of tumor samples, which may be used to decipher cancer signaling, and related alterations. Managing and analyzing data from large-scale projects, such as TCGA, is a demanding task. It is difficult to dissect the high complexity hidden in genomic data and to account for inter-tumor heterogeneity adequately. Methods: In this study, we used a robust statistical framework along with the integration of diverse bioinformatic tools to analyze next-generation sequencing data from more than 1000 patients from two different lung cancer subtypes, i.e., the lung adenocarcinoma (LUAD) and the squamous cell carcinoma (LUSC). Results: We used the gene expression data to identify co-expression modules and differentially expressed genes to discriminate between LUAD and LUSC. We identified a group of genes which could act as specific oncogenes or tumor suppressor genes in one of the two lung cancer types, along with two dual role genes. Our results have been validated against other transcriptomics data of lung cancer patients. Conclusions: Our integrative approach allowed us to identify two key features: a substantial up-regulation of genes involved in O-glycosylation of mucins in LUAD, and a compromised immune response in LUSC. The immune-profile associated with LUSC might be linked to the activation of three oncogenic pathways, which promote the evasion of the antitumor immune response. Collectively, our results provide new future directions for the design of target therapies in lung cancer.
Interactions between biological entities are key to understanding their potential functional roles. Three fields of research have recently made particular progress: the investigation of transRNA–RNA and RNA–DNA transcriptome interactions and of trans DNA–DNA genome interactions. We now have both experimental and computational methods for examining these interactions in vivo and on a transcriptome- and genome-wide scale, respectively. Often, key insights can be gained by visually inspecting figures that manage to combine different sources of evidence and quantitative information. We here present R-chie, a web server and R package for visualizing cis and transRNA–RNA, RNA–DNA and DNA–DNA interactions. For this, we have completely revised and significantly extended an earlier version of R-chie (1) which was initially introduced for visualizing RNA secondary structure features. The new R-chie offers a range of unique features for visualizing cis and transRNA–RNA, RNA–DNA and DNA–DNA interactions. Particularly note-worthy features include the ability to incorporate evolutionary information, e.g. multiple-sequence alignments, to compare two alternative sets of information and to incorporate detailed, quantitative information. R-chie is readily available via a web server as well as a corresponding R package called R4RNA which can be used to run the software locally.
RNA structure formation in vivo happens co-transcriptionally while the transcript is being made. The corresponding co-transcriptional folding pathway typically involves transient RNA structure features that are not part of the final, functional RNA structure. These transient features can play important functional roles of their own and also influence the formation of the final RNA structure in vivo. We here present CoBold, a computational method for identifying different functional classes of transient RNA structure features that can either aid or hinder the formation of a known reference RNA structure. Our method takes as input either a single RNA or a corresponding multiple-sequence alignment as well as a known reference RNA secondary structure and identifies different classes of transient RNA structure features that could aid or prevent the formation of the given RNA structure. We make CoBold available via a web-server which includes dedicated data visualisation.
The advent of Next Generation Sequencing (NGS) technologies has opened new perspectives in deciphering the genetic mechanisms underlying complex diseases. Nowadays, the amount of genomic data is massive and substantial efforts and new tools are required to unveil the information hidden in the data.The Genomic Data Commons (GDC) Data Portal is a large data collection platform that includes different genomic studies included the ones from The Cancer Genome Atlas (TCGA) and the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiatives, accounting for more than 40 tumor types originating from nearly 30000 patients. Such platforms, although very attractive, must make sure the stored data are easily accessible and adequately harmonized. Moreover, they have the primary focus on the data storage in a unique place, and they do not provide a comprehensive toolkit for analyses and interpretation of the data. To fulfill this urgent need, comprehensive but easily accessible computational methods for integrative analyses of genomic data without renouncing a robust statistical and theoretical framework are needed. In this context, the R/Bioconductor package TCGAbiolinks was developed, offering a variety of bioinformatics functionalities. Here we introduce new features and enhancements of TCGAbiolinks in terms of i) more accurate and flexible pipelines for differential expression analyses, ii) different methods for tumor purity estimation and filtering, iii) integration of normal samples from the Genotype-Tissue-Expression (GTEx) platform iv) support for other genomics datasets, here exemplified by the TARGET data.Evidence has shown that accounting for tumor purity is essential in the study of tumorigenesis, as these factors promote confounding behavior regarding differential expression analysis. Henceforth, we implemented these filtering procedures in TCGAbiolinks. Moreover, a limitation of some of the TCGA datasets is the unavailability or paucity of corresponding normal samples. We thus integrated into TCGAbiolinks the possibility to use normal samples from the Genotype-Tissue Expression (GTEx) project, which is another large-scale repository cataloging gene expression from healthy individuals. The new functionalities are available in the TCGABiolinks v 2.8 and higher released in Bioconductor version 3.7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.