The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase that targets substrates for degradation to promote mitotic progression. Here, we show that the DNA damage response protein 53BP1 contains conserved KEN boxes that are required for APC/C-dependent degradation in early mitosis. Mutation of the 53BP1 KEN boxes stabilized the protein and extended mitotic duration, whereas 53BP1 knockdown resulted in a shorter and delayed mitosis. Loss of 53BP1 increased APC/C activity, and we show that 53BP1 is a direct APC/C inhibitor. Although 53BP1 function is not absolutely required for normal cell cycle progression, knockdown was highly toxic in combination with mitotic spindle poisons. Moreover, chemical inhibition of the APC/C was able to rescue the lethality of 53BP1 loss. Our findings reveal a reciprocal regulation between 53BP1 and APC/C that is required for response to mitotic stress and may contribute to the tumor-suppressor functions of 53BP1.
Highlights d mTORC1 activity is decreased during mitotic arrest d Mutations of raptor phosphorylation sites activate mTORC1 during mitotic arrest d Active mTORC1/S6K/PDCD4/eIF4A axis promotes survival during mitotic arrest d Inhibition of S6K or eIF4A accelerates cell death in response to mitotic poisons
CDC20 is a co-activator of the anaphase promoting complex/cyclosome (APC/C) and is essential for mitotic progression. APC/CCDC20 is inhibited by the spindle assembly checkpoint (SAC), which prevents premature separation of sister chromatids and aneuploidy in daughter cells. Although overexpression of CDC20 is common in many cancers, oncogenic mutations have never been identified in humans. Using whole exome sequencing, we identified heterozygous missense CDC20 variants (L151R and N331K) that segregate with cancer in two families. Characterization of these mutants showed they retain APC/C activation activity but show reduced binding to BUBR1, a component of the SAC. Expression of L151R and N331K promoted mitotic slippage in HeLa cells and primary skin fibroblasts derived from carriers. CRISPR/Cas9 was used to generate mice carrying N331K. Homozygous mice carrying N331K were non-viable, however, heterozygotes displayed accelerated oncogenicity in Myc-driven cancers. These findings highlight an unappreciated role for CDC20 variants as tumor promoting genes in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.