Dairy wastewater contains high levels of organics and other pollutants. The present study was carried out to investigate the biodegradation process of dairy effluents using some locally isolated bacteria and fungi. Four different dairy effluent samples were collected from Obour and 6th October industrial cities, Egypt. Five bacterial species (Pseudomonas aeruginosa, Bacillus subtilis, Lactobacillus delbrueckii, Staphylococcus aureus and Enterococcus hirae) and three fungal strains (Alternaria sp., Fusarium sp. and Aspergillus sp.) were isolated from dairy wastewater samples, identified and used for biodegradation process. Bacterial and fungal consortia were prepared separately in the laboratory. Two-stages (aeration and filtration) laboratory scale model was designed. Rice straw and activated carbon layers were used as filtration media. Results indicated the great ability of both studied bacteria and fungi for removal of organics (biological oxygen demand removal percent were 78.7% and 74.7% for bacteria and fungi, respectively) and the improvement of the physicochemical quality (total suspended solids removal percent were 99.3% and 99.0% for bacteria and fungi, respectively) of the dairy effluent. The addition of rice straw and activated carbon increased removal efficiencies. Biodegradation of dairy wastewater depending on local microorganisms is an effective, cheap and eco-friendly technology.
Exposure of chicks to a high ambient temperature (HT) has previously been shown to increase neuropeptide Y (NPY) mRNA expression in the brain. Furthermore, it was found that NPY has anti‐stress functions in heat‐exposed fasted chicks. The aim of the study was to reveal the role of central administration of NPY on thermotolerance ability and the induction of heat‐shock protein (HSP) and NPY sub‐receptors (NPYSRs) in fasted chicks with the contribution of plasma metabolite changes. Six‐ or seven‐day‐old chicks were centrally injected with 0 or 375 pmol of NPY and exposed to either HT (35 ± 1°C) or control thermoneutral temperature (CT: 30 ± 1°C) for 60 min while fasted. NPY reduced body temperature under both CT and HT. NPY enhanced the brain mRNA expression of HSP‐70 and ‐90, as well as of NPYSRs‐Y5, ‐Y6, and ‐Y7, but not ‐Y1, ‐Y2, and ‐Y4, under CT and HT. A coinjection of an NPYSR‐Y5 antagonist (CGP71683) and NPY (375 pmol) attenuated the NPY‐induced hypothermia. Furthermore, central NPY decreased plasma glucose and triacylglycerol under CT and HT and kept plasma corticosterone and epinephrine lower under HT. NPY increased plasma taurine and anserine concentrations. In conclusion, brain NPYSR‐Y5 partially afforded protective thermotolerance in heat‐exposed fasted chicks. The NPY‐mediated reduction in plasma glucose and stress hormone levels and the increase in free amino acids in plasma further suggest that NPY might potentially play a role in minimizing heat stress in fasted chicks.
Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the potential role that aquatic environments are correlated to proximity to anthropogenic activities in determining the antimicrobial resistance patterns of Enterococcus spp. recovered from fish in the river Nile in Giza, Elmounib, Egypt as a continuation of our larger study on the reservoirs of antibiotic resistance in the environment.
The impact of sequential feeding of whole or ground wheat on the performance of layer hen was investigated using ISABROWN hens from 19 to 42 weeks of age. In addition, the effect of reduced dietary energy content of a complete diet was also investigated. Four treatments were tested. Whole wheat was alternated with a protein-mineral concentrate (balancer diet) in a treatment (sequential whole wheat: SWW), while another treatment alternated ground wheat (sequential ground wheat: SGW) with the same balancer diet. The control (C) was fed a complete layer diet conventionally. Another treatment (low energy: LE) was fed a complete diet conventionally. The diet contained lower energy (10.7 v. 11.6 MJ/kg) compared to the C. Each treatment was allocated 16 cages and each cage contained five birds. Light was provided 16 h daily (0400 to 2000 h). Feed offered was controlled (121 g/bird per day) and distributed twice (2 3 60.5 g) at 4 and 11 h after lights on. In the sequential treatment, only wheat (whole or ground) was fed during the first distribution and the balancer diet during the second distribution. Left over feed was always removed before the next distribution. The total feed intake was not different between SWW and SGW, but the two were lower than C (P , 0.05). Wheat intake was however, lowered with SGW compared to SWW (P , 0.05). Egg production and egg mass (EM) were not different between treatments. Egg weight was lower with SGW than with SWW (P , 0.05), but the two were similar to C. Body weight (BW) was lowered (P , 0.01) with SGW relative to SWW and C, SWW BW being also lower than the C one. The efficiency of egg production was increased (P , 0.01) with the SWW and SGW relative to the control. Birds fed LE had higher feed intake (P , 0.05) but they had similar egg production and EM compared to the two sequential treatments. The efficiency of feed utilization was also reduced (P , 0.01) with LE compared to SWW and SGW. It was concluded that sequential feeding is more efficient than conventional feeding. In addition, whole wheat appeared more efficient than ground wheat in terms of egg and BW.
This study examines the hypothesis that tyrosine and tryptophan and canthanthin either alone or in combination in absence or presence of sulphate ion, can improve the performance of local laying hens in post-peak period (39-58 weeks). A total number of 360 hens plus 36 cocks 39 weeks old from Inshas strain were equally divided into 12 group with 3 replicates (10 hens+ 1 cocks each) and housed in wire cages. The experimental hens fed from 39 to 58 week of age the control diet without or with 6 ppm Canthaxanthin (CAN) , 0.05% tyrosine(TYR) , 0.05% tryptophan(TRY) , 6 ppm CAN + 0.05% TYR, 6 ppm CAN + 0.05% TRY. The rest of treatments from were fed the same previous treatments plus 0.5 % anhydrous sodium sulphate (SS). The most important results obtained were as follow: 1-All dietary feed additives used in this study increased egg number, egg mass and shell thickness. 2-The addition of SS increased the beneficial effect of CAN, TYR and TRY. 3-The carotenoids like CAN with TYR or TRY in presence or absence of SS can improve the egg production, fertility and hatchability of developed laying hens in post-peak period. In conclusion, the mixture of CAN+TYR+SS was the most successful additive on productive performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.