In this work, we study the effect of the thickness variation of viscoelastic layer inserted in a laminated multi-layer beam in forced vibration on the vertical displacements and on the natural frequencies. The new structure is a sandwich structure composed by two external layers (top and bottom facesheets) of aluminum and viscoelastic core of 3M ISD112 polymers. The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. The finite element method including the viscoelastic model of fractional derivatives for modeling the sandwich structure is used. The system resolution of the nonlinear equations of motion of the sandwich structure is required to use a numerical integration method as the explicit method of Newmark to obtain the transient response. Also, ANSYS finite element modeling is applied to the sandwich structure to calculate the frequency response in harmonic vibration. The increase in the thickness of the viscoelastic layer leads to a decrease in the amplitudes of vibration. The natural frequencies found by the two methods are very close to the frequencies found experimentally in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.