In this paper, a new wiretap channel model is proposed, where the legitimate transmitter and receiver communicate over a discrete memoryless channel. The wiretapper has perfect access to a fixed-length subset of the transmitted codeword symbols of her choosing. Additionally, she observes the remainder of the transmitted symbols through a discrete memoryless channel. This new model subsumes the classical wiretap channel and wiretap channel II with noisy main channel as its special cases. The strong secrecy capacity of the proposed channel model is identified. Achievability is established by solving a dual secret key agreement problem in the source model, and converting the solution to the original channel model using probability distribution approximation arguments. In the dual problem, a source encoder and decoder, who observe random sequences independent and identically distributed according to the input and output distributions of the legitimate channel in the original problem, communicate a confidential key over a public error-free channel using a single forward transmission, in the presence of a compound wiretapping source who has perfect access to the public discussion. The security of the key is guaranteed for the exponentially many possibilities of the subset chosen at wiretapper by deriving a lemma which provides a doubly-exponential convergence rate for the probability that, for a fixed choice of the subset, the key is uniform and independent from the public discussion and the wiretapping source's observation.The converse is derived by using Sanov's theorem to upper bound the secrecy capacity of the new wiretap channel model by the secrecy capacity when the tapped subset is randomly chosen by nature.
Abstract-In this work, we analyze the diversity gain region (DGR) of the single-antenna Rayleigh fading Z-Interference channel (ZIC). More specifically, we characterize the achievable DGR of the fixed-power split Han-Kobayashi (HK) approach under these assumptions. Our characterization comes in a closed form and demonstrates that the HK scheme with only a common message is a singular case, which achieves the best DGR among all HK schemes for certain multiplexing gains. Finally, we show that generalized time sharing, with variable rate and power assignments for the common and private messages, does not improve the achievable DGR.
In this paper, new two-user multiple access wiretap channel models are studied. First, the multiple access wiretap channel II with a discrete memoryless main channel, under three different wiretapping scenarios, is introduced. The wiretapper, as in the classical wiretap channel II model, chooses a fixedlength subset of the channel uses on which she obtains noise-free observations of one of the codewords, a superposition of the two codewords, or each of the two codewords. These thus extend the recently examined wiretap channel II with a noisy main channel to a multiple access setting with a variety of attack models for the wiretapper. Next, a new multiple access wiretap channel model, which further generalizes the multiple access wiretap channel II under the third wiretapping scenario, i.e., that which features the strongest adversarial model, is proposed. In this model, the wiretapper, besides choosing a subset of the channel uses to noiselessly observe the transmitted codeword symbols of both users, observes the remainder of the two codewords through a discrete memoryless multiple access channel.Achievable strong secrecy rate regions for all the proposed models are derived. Achievability is established by solving dual multi-terminal secret key agreement problems in the source model, and converting the solution to the original channel models using probability distribution approximation arguments.The derived achievable rate regions quantify the secrecy cost due to the additional capabilities of the wiretapper with respect to the previous multiple access wiretap models.
In this paper, a multiple antenna wire-tap channel in the presence of a multi-antenna cooperative jammer is studied. In particular, the secure degrees of freedom (s.d.o.f.) of this channel is established, with N t antennas at the transmitter, N r antennas at the legitimate receiver, and N e antennas at the eavesdropper, for all possible values of the number of antennas, N c , at the cooperative jammer. In establishing the result, several different ranges of N c need to be considered separately. The lower and upper bounds for these ranges of N c are derived, and are shown to be tight. The achievability techniques developed rely on a variety of signaling, beamforming, and alignment techniques which vary according to the (relative) number of antennas at each terminal and whether the s.d.o.f. is integer valued. Specifically, it is shown that, whenever the s.d.o.f. is integer valued, Gaussian signaling for both transmission and cooperative jamming, linear precoding at the transmitter and the cooperative jammer, and linear processing at the legitimate receiver, are sufficient for achieving the s.d.o.f. of the channel. By contrast, when the s.d.o.f. is not an integer, the achievable schemes need to rely on structured signaling at the transmitter and the cooperative jammer, and joint signal space and signal scale alignment. The converse is established by combining an upper bound which allows for full cooperation between the transmitter and the cooperative jammer, with another upper bound which exploits the secrecy and reliability constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.