The increasing computational power and proliferation of big data are now empowering Artificial Intelligence (AI) to achieve massive adoption and applicability in many fields. The lack of explanation when it comes to the decisions made by today's AI algorithms is a major drawback in critical decision‐making systems. For example, deep learning does not offer control or reasoning over its internal processes or outputs. More importantly, current black‐box AI implementations are subject to bias and adversarial attacks that may poison the learning or the inference processes. Explainable AI (XAI) is a new trend of AI algorithms that provide explanations of their AI decisions. In this paper, we propose a framework for achieving a more trustworthy and XAI by leveraging features of blockchain, smart contracts, trusted oracles, and decentralized storage. We specify a framework for complex AI systems in which the decision outcomes are reached based on decentralized consensuses of multiple AI and XAI predictors. The paper discusses how our proposed framework can be utilized in key application areas with practical use cases.
This article is categorized under:
Technologies > Machine Learning
Technologies > Computer Architectures for Data Mining
Fundamental Concepts of Data and Knowledge > Key Design Issues in Data Mining
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.