Semiconductors and clay materials have significant applications in environmental, civil engineering and optoelectronic sectors. The application of an electric field to such systems is subject of many works. However, to understand the behaviour of such materials under the influence of an electric field, the perception of its electrical properties is essential. In the present study, the powerful technique of complex impedance spectroscopy (CIS) is introduced to illustrate the electrical characteristics of two types of disordered semiconducting materials. These are Cu5In9Se16, an ordered defect compound of the I-III-VI2 family and a novel bentonite clay system which is an insulator at room temperature and semiconductor above 400 °C. Na-bentonite has been studied extensively because of its strong adsorption capacity and complexation ability while Cu5In9Se16 is considered for its use in solar and phtovoltaique domain. Some of selenides have turned out to be leading materials for electro-optical devices and the tellurides for thermoelectric power generation. It is very likely that study of bentonite clay and other similar materials may lead to the technology of heterojunction and clay composite. The frequency dependence of conductivity of bentonite was investigated using an impedance analyzer in the frequency range (20 Hz–1 MHz). The experimental data of CIS are analyzed using some analytical methods that take into account the effect of the grains and grain boundaries. The impedance data confirm the non-Debye behavior in these systems. Some important parameters related to the identified dominant contribution such as relaxation time and activation energies are estimated for the studied materials in the considered temperature and frequency ranges
Combined modulus and impedance spectra are employed in the present work to explore electrical inhomogeneity and carriers’ behaviors in a pure bentonite Moroccan clay based on equivalent circuit. It has been clearly observed that the electrical properties change due to the increase of temperature from 300 °C to 700 °C. The frequency-dependent imaginary modulus M" and imaginary impedance Z" curves has only one peak at each temperature indicating the predominance of the contribution of grains to the total electrical conduction in bentonite. The positions of these peaks move to higher frequencies when the temperature increases in relation with the distribution of relaxation time. Moreover, the activation energy for the conduction process in bentonite is determined from the slope of ln(ρdc) versus of 1/T in the order of 700 meV in good agreement with that obtained from the proposed equivalent circuit. On the other hand, let’s present a geotechnical study that show that our material is a swelling clay, very plastic and could be used as a binder. The external stress dependence of the bulk density, Young’s module and maximum stress are analysed. The thermal conductivity determined following the device of Lee's disks where two copper disks of thickness of 15 mm and diameter of 30 mm were used
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.