Castor biodiesel (CBD) was manufactured by slow pyrolysis of oil from highly yielded seeds with anhydrous sodium hydroxide catalyst. An experimental study of engine’s performance, emissions and combustion characteristics using biodiesel blended with gas oil in volumetric ratios of 0, 10, 25, 50, 75, and 100% at different loads was performed. Increase of CBD percentage in the blend led to a reduction in engine’s thermal efficiency, cylinder pressure, net heat release rate, and smoke emission. The exhaust gas temperature, specific fuel consumption, unburned hydrocarbon, CO, and nitrogen oxide emissions were increased with the increase of CBD ratio. Biodiesel showed the maximum increase in specific fuel consumption by 10% and the thermal efficiency was decreased by 10.5% about pure diesel. Smoke emissions were decreased for CBD100 by 12% about gas oil. The maximum increases in NOx, CO, HC emissions, and exhaust gas temperature for CBD 100 were 22, 34, 48, and 11%, respectively related to diesel oil. The maximum reductions in cylinder pressure and net heat release rate were 5 and 13% for CBD100 about gas oil, respectively. Biodiesel percentage of 10% showed near values of performance parameters and emissions to gas oil, so, it is recommended as the optimum percentage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.