Land evaluation is imperative for its efficient use in agriculture. Therefore, this study aimed at assessing the suitability of a region in West El-Minia for cultivating some of the major crops using the geographical information system (GIS). The results focus on allocating space for cultivating sugar beet and utilizing the free period of sugar beet in other crops. This exploitation helps to maintain the quality of the land and increase its fertility by using crop rotation with integrated agricultural management. A machine learning technique was implemented using the random forest algorithm (RF) to predict soil suitability classes for sugar beet using geomorphology, terrain attribute and remote sensing data. Fifteen major crops were evaluated using a suitability multicriteria approach in GIS environment for crop rotation decisions. Soil parameters were determined (soil depth, pH, texture, CaCO3, drainage, ECe, and slope) to characterize the land units for soil suitability. Soils of the area were found to be Entisols; Typic Torrifluvents, Typic Torripsamments and Typic Torriorthents and Aridsols; Typic Haplocacids, Calcic Haplosalids and Sodic Haplocalcids. Overall, the studied area was classified into four suitability classes: high “S1”, moderate “S2”, marginal “S3”, and not suitable “N”. The area of each suitability class changed depending on the crop tested. The highest two crops that occupied S1 class were barley with 471.5 ha (representing 6.8% of the total study area) and alfalfa with 157.4 ha (2.3%). In addition, barley, sugar beet, and sorghum occupied the highest areas in S2 class with 6415.3 ha (92.5%), 6111.3 ha (88.11%) and 6111.3 ha (88.1%), respectively. Regarding the S3 class, three different crops (sesame, green pepper, and maize) were the most highly represented by 6151.8 ha (88.7%), 6126.3 ha (88.3%), and 6116.7 ha (88.2%), respectively. In the end, potato and beans occupied the highest areas in N class with 6916.9 ha (99.7%) and 6853.5 ha (98.8%), respectively. The results revealed that the integration of GIS and soil suitability system consists of an appropriate approach for the evaluation of suitable crop rotations for optimized land use planning and to prevent soil degradation. The study recommends using crop rotation, as it contributes to soil sustainability and the control of plant pests and diseases, where the succession of agricultural crops on a scientific basis aims at maintaining the balance of nutrients and fertilizers in the soil.
In order to ensure the sustainability of production from agricultural lands, the degradation processes surrounding the fertile land environment must be monitored. Human-induced risk and status of soil degradation (SD) were assessed in the Northern-Eastern part of the Nile delta using trend analyses for years 2013 to 2023. SD hotspot areas were identified using time-series analysis of satellite-derived indices as a small fraction of the difference between the observed indices and the geostatistical analyses projected from the soil data. The method operated on the assumption that the negative trend of photosynthetic capacity of plants is an indicator of SD independently of climate variability. Combinations of soil, water, and vegetation’s indices were integrated to achieve the goals of the study. Thirteen soil profiles were dug in the hotspots areas. The soil was affected by salinity and alkalinity risks ranging from slight to strong, while compaction and waterlogging ranged from slight to moderate. According to the GIS-model results, 30% of the soils were subject to slight degradation threats, 50% were subject to strong risks, and 20% were subject to moderate risks. The primary human-caused sources of SD are excessive irrigation, poor conservation practices, improper utilisation of heavy machines, and insufficient drainage. Electrical conductivity (EC), exchangeable soil percentage (ESP), bulk density (BD), and water table depth were the main causes of SD in the area. Generally, chemical degradation risks were low, while physical risks were very high in the area. Trend analyses of remote sensing indices (RSI) proved to be effective and accurate tools to monitor environmental dynamic changes. Principal components analyses were used to compare and prioritise among the used RSI. RSI pixel-wise residual trend indicated SD areas were related to soil data. The spatial and temporal trends of the indices in the region followed the patterns of drought, salinity, soil moisture, and the difficulties in separating the impacts of drought and submerged on SD on vegetation photosynthetic capacity. Therefore, future studies of land degradation and desertification should proceed using indices as a factor predictor of SD analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.