Electric discharge machining (EDM) is one of the non-conventional machining processes that supports machining for high-strength and wear-resistant materials. It is a challenging task to select the process parameters in real-time to maximize the material removal rate since real-time process trials are expensive and the EDM process is stochastic. For the ease of finding process parameters, a modelling of the EDM process is proposed. Due to the non-linear relationship between the material removal rate (MRR) and discharge time, a model-free adaptive extremum-seeking controller (ESC) is proposed in the feedback path of the EDM process for finding an optimal value of the discharge time at which the maximum material removal rate can be achieved. The results of the model show a performance that is closer to the actual process by choosing steel workpieces and copper electrodes. The proposed model offers a lower error rate when compared with actual experimental process data. When compared to manual searching for an optimal point, extreme seeking online searching performed better as per the experimental results. It was observed that the experimental validation also proved that the ESC can produce a large MRR by tracking the extremum control. The present study has been limited to only the MRR, but it is also possible to implement such algorithms for more than one response parameter optimization in future studies. In such cases the performance measures of the process could be further enhanced, which could be used for a real-time complex die- and mold-making process using EDM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.