<span>Iris recognition system is a technique of identifying people using their distinctive features. Generally, this technique is used in security, because it offers a good reliability. Different researchers have proposed new methods for iris recognition system to increase its effectiveness. In this paper, we propose a new method for iris recognition based on Gabor filter and steerable pyramid decomposition. It’s an efficient and accurate linear multi-scale, multi-orientation image decomposition to capture texture details of an image. At first, the iris image is segmented, normalized and decomposed by Gabor filter and steerable pyramid method. Multiple sub-band are generated by applying steerable pyramid on the input image. High frequency sub-band is ignored to eliminate noise and increase the accuracy. The method was validated using CASIA-v4 (Chinese Academy of Sciences Institute of Automation), IITD (</span><span>Indian Institute of Technology Delhi) and UPOL (University of Phoenix Online) databases. The performance of the proposed method is better than the most methods in the literature. The proposed algorithm provides accuracy of 99.99%. False acceptance rate (FAR), equal error rate (EER) and genuine acceptance rate (GAR) have also been improved.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.