The comparison between crustal stress and surface strain azimuthal patterns has provided new insights into several complex tectonic settings worldwide. Here, we performed such a comparison for Egypt taking into account updated datasets of seismological and geodetic observations. In north-eastern Egypt, the stress field shows a fan-shaped azimuthal pattern with a WNW–ESE orientation on the Cairo region, which progressively rotated to NW–SE along the Gulf of Aqaba. The stress field shows a prevailing normal faulting regime, however, along the Sinai/Arabia plate boundary it coexists with a strike–slip faulting one (σ1 ≅ σ2 > σ3), while on the Gulf of Suez, it is characterized by crustal extension occurring on near-orthogonal directions (σ1 > σ2 ≅ σ3). On the Nile Delta, the maximum horizontal stress (SHmax) pattern shows scattered orientations, while on the Aswan region, it has a WNW–ESE strike with pure strike–slip features. The strain-rate field shows the largest values along the Red Sea and the Sinai/Arabia plate boundary. Crustal stretching (up to 40 nanostrain/yr) occurs on these areas with WSW–ENE and NE–SW orientations, while crustal contraction occurs on northern Nile Delta (10 nanostrain/yr) and offshore (~35 nanostrain/yr) with E–W and N–S orientations, respectively. The comparison between stress and strain orientations over the investigated area reveals that both patterns are near-parallel and driven by the same large-scale tectonic processes.
The Nile Valley in Egypt is located to the west of the Red Sea Rift and to the south of the Mediterranean Sea. Recently, some moderate earthquakes were occurred along the Nile Valley at the eastern and western side. Tectonically, the Nile Valley is controlled by NW-SE, NE-SW, E-W and N-S tectonic trends due to the exerted forces and stresses.A program of studying the recent crustal movements in Egypt has been started since 1984 to cover some areas which are characterized by the occurrence of felt Earthquakes. One of these areas is the Nile Valley. About 6 moderate earthquakes with magnitudes more than 4 were occurred on both sides of River Nile.The present study aimed to determine the recent crustal movement parameters along the Nile Valley using the Global Positioning System (GPS) measurements. To achieve this mission, a GPS network consisting of ten geodetic stations has been established on both sides along the Nile Valley area. GPS measurements have been collected from 2007 to 2012. The collected data were processed using Bernese 5.0 Software. The result of the data analysis indicates that the rate of local velocity is small ranging from 1 to 4 mm/year. This rate is consistent with the low rate of occurrence of recent earthquakes activity along the Nile Valley area. But, the results obtained from the calculation of the regional velocity indicated that the velocity of the GPS stations including the African Plate motion is about 25 mm/year in the northeast direction which is consistent with the African Plate motion direction. ª 2015 Production and hosting by Elsevier B.V. on behalf
SUMMARY
Annual sea level variations in the Red Sea have amplitudes of 15–20 cm as observed using various techniques such as tide gauges, satellite altimetry and recently Gravity Recovery and Climate Experiment (GRACE) satellite data. In this study, we demonstrate that Global Navigation Satellite System (GNSS) observations can also be used to measure the effect of these sea level variations. The extra water mass presses on the seafloor, which causes horizontal and vertical deformations. Using time-series from 10 coastal GNSS stations, we observe annual horizontal and vertical loading displacements with amplitudes of 2–5 mm. When correcting for atmospheric, hydrological and surface water loading and a residual geocentre motion, significant annual signals of approximately 0.5 and 2 mm are still observed for the horizontal and vertical components, respectively. In the northern Red Sea, the observed annual signals and predicted annual sea level loading show good agreement. This confirms that the signal is mostly a result of the variations in water mass and thermal expansion. Furthermore, we conclude that the uncertainties in the hydrological model over Ethiopia and Eritrea influence the loading over the southern Red Sea, which was underestimated in previous studies using GRACE data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.