To increase rams’ post-thaw semen quality following cryopreservation, this study used enriched Tris-based diluent with varying amounts of moringa leaf methanolic extract (MLME). The antioxidant activity, total phenolic, and total flavonoid content were all assessed in MLME. The sperm of five healthy Awassi rams were collected, divided into 4 equal aliquots, and diluted [1:5; (v/v)] in Tris-citrate-glucose extender supplemented with 0.48, 0.56, and 0.64 mg MLME/ml or without MLME supplementation (control). The percentages of sperm total motility (STM, %), sperm progressive motility (SPM, %) and viability (V, %), abnormal morphology (AM, %), membrane functional integrity (MFI, %), and acrosome integrity (AI %) were measured. Malondialdehyde (MDA), nitric oxide (NO), ascorbic acid (AA), superoxide dismutase (SOD), glutathione peroxidase (GPx), total cholesterol (TC), low-density lipoproteins (LDL), lactate dehydrogenase (LDH), alkaline phosphatase (ALP), zinc (Zn), and copper (Cu) were measured. The total phenolic gallic acid and flavonoid catechin (equivalent) contents were 19.78 mg/g and 11.94 mg/g, respectively. 2,2-Diphenyl-1-picrylhydrazyl (34.37 mM TE/g) and 2,2′-azino-bis/3-ethylbenzothiazoline-6-sulfonic acid (53.47 mM TE/g) were found in MLME. MLME had a 64.59 mM TE/g ferric-reducing power. In comparison to control, the addition of 0.64 mg/ml MLME to Tris-based extender resulted in the highest (P < 0.001) STM (55.22 ± 0.98), SPM (45.41 ± .70), SV (60.01 ± 1.05), MFI (75.23 ± 0.77), and AI (73.13 ± 0.72) and the lowest (P < 0.001) AM (21.34 ± 0.72) values. In comparison to the control, the addition of 0.56 mg/ml semen extender resulted in lower STM, SPM, SV, MFI, and AI with higher AM percentages. MDA (P = 0.03), NO (P = 0.012), CHO (P = 0.0001), and LDL (P = 0.004) were reduced by 0.64 mg/ml MLME, while AA (P = 0.017) and SOD (P = 0.0001) were elevated. In conclusion, the highest copper (P = 0.006) and lowest zinc concentrations in MLME (0.48 mg/ml extender) deteriorated the post-thaw semen quality, prompting us to suggest the addition of 0.64 mg MLME to rams’ Tris-based semen extender.
Context Cordia dichotoma Forst. (Boraginaceae) has potent pharmacological impact. Meanwhile, its effect on fertility is unclear. Objective This study investigates the effect of Cordia fresh fruits hydroethanolic extract on fertility. Materials and methods 120 Wistar albino male rats were divided into four groups ( n = 30). The first group was negative control, and the second, third, and fourth groups received 125, 250, and 500 mg extract/kg bodyweight for 56 days. After 56 days, Cordia force-feeding stopped, and all groups were kept under laboratory conditions for another month to study the recovering effect. Results After day 56, extract at 500 mg/kg significantly reduced sperm total count, motility%, and alive%, to 47.60 ± 2.27 × 10 6 sperm/mL, 43.33% ± 1.49, and 63.67% ± 1.19, respectively, abnormalities% increased considerably (26.67% ± 0.54), compared to the negative control. Also, significant depletion on follicle-stimulating hormone (2.66 ± 0.21 mIU/L), luteinizing hormone (1.07 ± 0.06 mIU/L), and testosterone (2.69 ± 0.13 nmol/L) level was recorded, compared to the negative control. Cordia negative effect showed on histopathological studies of testes, prostate, and seminal vesicles. Fortunately, these adverse effects of Cordia recovered remarkably after stopping administration for one month. Conclusions Cordia antifertility effect may be due to its hypocholesterolemic effect, where cholesterol, the steroid cycle precursor, was significantly reduced. This study can be incorporated in clinical research after being repeated on another small experimental animal, their offspring, and one large experimental animal, then going to a clinical study that we plan to do in the future.
Background The global warming has become a worldwide problem affecting adversely the human being and the productivity of the livestock. This study aimed to investigate the effect of seasonal heat stress on the incidence of retained fetal membranes, oxidant-antioxidant biomarkers, haptoglobin, mineral status, milk production, inseminations/conception, estradiol, and days open of Holstein Friesian cows raised under Egyptian environmental conditions. Blood samples were collected one week before parturition and one day after parturition from two dairy farms. Total proteins, albumin, nitric oxide (NO), glutathione reduced (GSH), haptoglobin, estradiol, calcium, phosphorus, iron, copper and zinc were measured in the blood serum for cows delivered during the hot months (May to September) and the cold months (December to April). Results Cows delivered during the hot months had the highest prevalence of retained placenta and were older (P = 0.0001) of mean parity (4.93 ± 2.24), required more services/conception (P = 0.0001; 3.14 ± 1.20), produced higher (P = 0.0001) milk yield/Ton (8.43 ± 1.29) compared to those retained during the cold months (8.00 ± 1.03). All cows retained their placentae had low estradiol ((P = 0.0001) compared to those dropped their placenta within the same season. All cows retained their fetal membranes had high NO (P = 0.0002) but low GSH (P = 0.008), and globulin (P = 0.041). During the hot months, cows with retained placenta obtained low calcium, corrected calcium and calcium/phosphorus ratio. The type of placental drop and its interaction with season influenced (P < 0.01) services /conception, milk yield, NO, estradiol and copper. Conclusions The retention of fetal membranes decreased the productive and reproductive parameters and its effects deteriorated reproduction and immunological status during the hot months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.