Congestion on roadways is an issue in many cities, especially at peak times, which causes air and noise pollution and cause pressure on citizens. So, the implementation of intelligent transportation systems (ITSs) is a very important part of smart cities. As a result, the importance of making accurate short-term predictions of traffic flow has significantly increased in recent years. However, the current methods for predicting short-term traffic flow are incapable of effectively capturing the complex non-linearity of traffic flow that affects prediction accuracy. To overcome this problem, this study introduces two novel models. The first model uses two long-short term memory (LSTM) units that can extract the traffic flow temporal features followed by four dense layers to perform the traffic flow prediction. The second model uses two gated recurrent unit (GRU) units that can extract the traffic flow temporal features followed by three dense layers to perform the traffic flow prediction. The two proposed models give promising results on performance measurement system (PEMS), traffic and congestions (TRANCOS) dataset that is firstly used as metadata. So, the two models can do this in specific cases and are able to suddenly capture trend changes.
Image restoration is widely applied in many areas. When operating on images with different scales for the representation of pixel intensity levels or low SNR, the traditional restoration algorithm lacks validity and induces noise amplification, ringing artifacts and poor convergent ability. In this paper, an improved NAS-RIF algorithm is proposed to overcome the shortcomings of the traditional algorithm. The improved algorithm proposes a solution for blurred with noise image by constrained maximization of some of the detail wavelet packet energies. This algorithm gives enhancement with the sharpness of the deconvolved images. In determining the support region, a presegmentation is used to form it close to the object in the image, Moreover, as compared with the traditional algorithm. Simulations show that the improved algorithm behaves a better convergence, noise resistance and provides a better estimate of the original image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.