The last decade has contributed to our understanding of the three-dimensional structure of the human immunodeficiency virus, type 1 (HIV-1) integrase (IN) and to the description of how the enzyme catalyzes the viral DNA integration into the host DNA. Recognition of the viral DNA termini by IN is sequence-specific, and that of the host DNA does not require particular sequence, although in physicochemical studies IN fails to discriminate between the two interactions. Here, such discrimination was allowed thanks to a model system using designed oligonucleotides and peptides as binding structures. Spectroscopic (circular dichroism, NMR, and fluorescence anisotropy) techniques and biochemical (enzymatic and filter binding) assays clearly indicated that the amphipathic helix ␣4, located at the catalytic domain surface, is responsible for the specific high affinity binding of the enzyme to viral DNA. Analogues of the ␣4 peptide having increased helicity and still bearing the biologically relevant lysines 156 and 159 on the DNA binding face, and oligonucleotides conserving an intact attachment site, are required to achieve high affinity complexes (K d of 1.5 nM). Data corroborate previous in vivo results obtained with mutated viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.