The sorption of xyloglucan (XG) on cellulose is a basic feature of the supramolecular assembly of plant cell walls. The binding to cellulose of xyloglucan fractions from Rubus fruticosus suspension-cultured cells with different substitution patterns was assayed on celluloses having various degrees of crystallinity between 20 and 95%. The primary structure of XGs differing in their Xyl/Glc ratio affected their binding to cellulose. The less substituted XGs gave the highest binding yields. Selective removal of the terminal fucosyl residues of XGs differentially affected the binding depending on the crystallinity of cellulose. The results showed large variations on the way cellulose crystallinity affects the binding interaction of XGs. Interestingly, one of the highest binding capacities was exhibited by the primary cell wall cellulose isolated from the actual R. fruticosus cells which also had the lowest crystallinity. Differences in binding to primary wall cellulose appeared to be inversely related to the global substitution of the glucan main chain of XGs.Abbreviations: XG -xyloglucan; XGn -native xyloglucan; XG-deF -de-fucosylated xyloglucan.
Computational energy minimization techniques have been used to study the structure and crystal properties of kaolinite. The full elastic tensors of the sheet silicates of clay have been derived with first-principles calculations based on density functional theory. All calculations were performed using GULP program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.