The objective of this study was to manufacture low‐fat Feta cheese (LFC) using different types of starter cultures, such as yogurt (Y) cultures (Streptococcus thermophilus and Lactobacillus bulgaricus), bifidobacterium (B) cultures (Bifidobacterium bifidum and Bifidobacterium longum), and mixed of them (Y + B) at different rates (0.4, 0.5, and 0.6%). The Y + B cultures improved the flavor and body and texture of LFC, especially at a ratio of 0.4 + 0.6% and 0.5 + 0.5%, which is similar to the typical full‐fat Feta cheese. Also, the LFC maintained a higher number of probiotics and lactic acid bacteria after 30 d of storage at a range of 5 to 7 log cfu/g.
There are different methods that have been recently applied to develop a process to manufacture low‐fat Feta cheese (LFC) with acceptable flavor and texture. The objective of this study was to produce LFC from skim buffalo's milk (SBM) using Streptococcus thermophilus (ST) and Lactobacillus bulgaricus (LB) as control LFC (T1) incorporated with other probiotic adjunct cultures (PAC), such as Lactobacillus casei (LBC) in T2, Bifidobacterium bifidum (BB) in T3, and Lactococcus lactis subsp. lactis (LL) in T4. The SBM was pasteurized and inoculated with 3% of starter cultures; then, 0.4% of rennet and 3% of salt were added. After coagulation, the cheese was cut, packed, and stored at 4°C. The chemical, microbiological, and sensory characteristics of LFC were monitored during 14 days of storage. The moisture, acidity, total protein (TP), salt, and fat of LFC were approximately 75.0%, 1.0%, 17.0%, 3.0%, and 1.2%, respectively, after 14 days of storage at 4°C. The viability of PAC was high (5–7 log cfu/g) at the end of storage, which makes LFC a functional product with a valuable source of probiotic. Moreover, the adjunct cultures improved (p < .05) the sensory characteristics of LFC, including the texture and flavor.
Hepatitis E virus (HEV) infection is endemic in developing and developed countries. HEV was reported to be excreted in the milk of ruminants, raising the possibility of transmission of HEV infection through the ingestion of contaminated milk. Therefore, the detection of HEV markers in milk samples becomes pivotal. However, milk includes inhibitory components that affect HEV detection assays. Previously it was reported that dilution of milk matrix improves the performance of HEV molecular assay, however, the dilution of milk samples is not the best strategy especially when the contaminated milk sample has a low HEV load. Therefore, the objective of this study is to compare the effect of extraction procedures on the efficiency of HEV RNA detection in undiluted milk samples. In addition, we assessed the effect of the removal of milk components such as fats and casein on the performance of the molecular and serological assays of HEV. Phosphate buffered saline (PBS) and different milk matrices (such as whole milk, skim milk, and milk serum) were inoculated with different HEV inoculums and subjected to two different extraction procedures. Method A includes manual extraction using spin column-based extraction, while method B includes silica-based automated extraction. Method A was more sensitive than method B in the whole milk and skim milk matrices with a LoD95% of 300 IU/mL, and virus recovery yield of 47%. While the sensitivity and performance of method B were significantly improved using the milk serum matrix, with LoD95% of 96 IU/mL. Interestingly, retesting HEV positive milk samples using the high sensitivity assay based on method B extraction and milk serum matrix increased the HEV RNA detection rate to 2-fold. Additionally, the performance of HEV serological assays such as anti-HEV IgG and HEV Ag in the milk samples was improved after the removal of the fat globules from the milk matrix. In conclusion, HEV RNA assay is affected by the components of milk and the extraction procedure. Removal of inhibitory substances, such as fat and casein from the milk sample increased the performance of HEV molecular and serological assays which will be suitable for the low load HEV milk with no further dilutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.