In human colon carcinoma HT-29 Glc t+ cells, L-arginine is the common precursor of polyamines which are absolutely necessary for cellular profiferation and nitric oxide (NO) with reported anti-proliferative activity. The aim of the present work was to test the effect of the NO donor sodium nitroprusside (SNP) on polyamine synthesis and cellular growth in HT-29 cells. SNP in the micromolar range inhibits cellular putrescine synthesis and this effect is greatly reversed by haemoglobin, supporting the view that the effect of SNP is related to the generation of NO. This corresponds to the inhibition by SNP of ornithine decarboxylase activity. Furthermore, SNP inhibits cellular proliferation. The effect of SNP is reversed by haemoglobin after 2 days of treatment but not after 4 days. Although no acute toxic effect of SNP was detected after 90 min incubation, it greatly enhanced the cellular death rate after several days in culture as estimated by the LDH leakage test. In conclusion, our data raise the possibility of an inhibitory interrelationship between NO and polyamine metabolic pathways. NO induced inhibition of putrescine synthesis and growth in HT-29 cells is discussed from a causal perspective.
HT-29 Glc-/+ cells originate from a human colon adenocarcinoma. These cells have been selected in a glucose-free culture medium and switched back in a glucose-containing medium. In this condition, they can spontaneously differentiate after confluency in enterocyte-like cells according to the activity of the brush-border associated hydrolase dipeptidyl peptidase IV. Since L-arginine can generate polyamines which are necessary for cellular proliferation and also differentiation, and nitric oxide with reported anti-proliferative property, the metabolism of this amino acid was examined in proliferative and differentiated isolated HT-29 cells. Proliferative HT-29 cells were characterized by micromolar intracellular concentration of putrescine and millimolar concentration of spermidine and spermine. In these cells, L-arginine is converted to L-ornithine and putrescine and to a minor part to nitric oxide and L-citrulline. Putrescine was taken up by HT-29 cells, leading to the production of a modest amount of spermidine. The diamine was slightly incorporated into cellular proteins and largely released in the incubation medium. The proliferative HT-29 cells take up spermidine and spermine but do not catabolize these polyamines and slightly released spermidine. Differentiation of HT-29 cells is not associated with change in intracellular polyamine content but is paralleled by an almost complete extinction of de novo synthesis of putrescine (due to a dramatic decrease of ornithine decarboxylase activity) and by a reduced release capacity of putrescine. In contrast, putrescine net uptake and incorporation into cellular proteins remained unchanged after differentiation. Furthermore, spermidine and spermine metabolism as well as the circulation of L-arginine in the nitric oxide synthase pathway were also not modified after differentiation. In conclusion, putrescine is the L-arginine-derived molecule, the metabolism of which is specifically and markedly modified when HT-29 cells move from proliferative to differentiated state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.