Geopolymer is a new sustainable binding material. It was developed to reduce CO2 footprint of existing Portland cement concrete. One ton of Geopolymeric cement generates 0.18 ton of CO2 from combustion carbon-fuel. This figure is 6 times less than the emission of Portland cement manufacture. The relationship between the compressive strength of Geopolymer concrete and the percentage of amorphous silica in the source material has been studied in the present work. Six mixes with different source materials were investigated to verify this relationship. The used Pozzolanic materials were three types of Fly ash, two types of Metakaolin and one type of ground granulated blast furnace slag. Geopolymer concrete samples were cured by heating for 72 hours. The testing ages for compressive strength were 7, 14, 28, and 60 days. The results showed that a noticeable relationship between compressive strength and amorphous silica was observed. The microstructure of the six mixes was studied in detail through the SEM and XRD analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.