In this paper, an Internal model Controller (IMC) based PID with fractional filter for a first order plus time delay process is proposed. The structure of the controller has two parts, one is integer PID controller part cascaded with fractional filter. The proposed controller has two tuning factors λ, filter time constant and a, fractional order of the filter. In this work, the two factors are decided in order to obtain low Integral Time Absolute Error (ITAE). The effectiveness of the proposed controller is studied by considering a non linear (hopper tank) process. The experimental set up is fabricated in the laboratory and then data driven model is developed from the experimental data. The non linear process model is linearised using piecewise linearization and two linear regions are obtained. At each operating point, linear first order plus dead time model is obtained and the controller is designed for the same. To show the practical applicability, the proposed controller is implemented for the proposed experimental laboratory prototype.
Transmission and distribution play a vital role in delivering electricity. The presence of any fault in these systems may stop the delivery of electricity, which may create a huge problem in today's world. Hence, fault detection has become essential for delivering uninterrupted power supply. In this work, a portable and intelligent system is designed, and the fault detection on underground transmission lines is done using a developed hardware system. Also, the proposed system has a thermal camera which is an 8 × 8 array of infrared thermal sensors interfaced with a system-on-chip device, which collects the real-time thermal images when connected to the device. Further, the thermal camera returns an array of 64 individual infrared temperature readings of the transmission line and locates the point of damage that might occur due to the aging of conductor insulation, physical force, etc. Also, 200 images with thermal information from the different instances and directions are utilized to train the adapted machine learning algorithm. The python software is utilized to code the machine learning algorithm inside the system-on-chip device. The convolutional neural network-based machine learning algorithm is adopted and validated using various performance metrics such as accuracy, sensitivity, specificity, precision, negative predicted value, and F1_score. Results demonstrate that the proposed hardware is highly capable of locating faults in underground transmission lines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.