It is known from the work of Baik, Deift, and Johansson [1999] that we have Tracy-Widom fluctuations for the longest increasing subsequence of uniform permutations. In this paper, we prove that this result holds also in the case of the Ewens distribution and more generally for a class of random permutation with distribution invariant under conjugation. Moreover, we obtain the convergence of the first components of the associated Young tableaux to the Airy Ensemble as well as the global convergence to the Vershik-Kerov-Logan-Shepp shape. Using similar techniques, we also prove that the limiting descent process of a large class of random permutations is stationary, one-dependent and determinantal.
We use moment method to understand the cycle structure of the composition of two independent invariant permutations. We prove that under a good control on fixed points and cycles of length 2, the limiting joint distribution of the number of small cycles is the same as in the uniform case i.e. for any positive integer k, the number of cycles of length k converges to the Poisson distribution with parameter 1 k and is asymptotically independent of the number of cycles of length k = k.
Bukh and Zhou conjectured that the expectation of the length of the longest common subsequence of two i.i.d random permutations of size $n$ is greater than $\sqrt{n}$. We prove in this paper that there exists a universal constant $n_1$ such that their conjecture is satisfied for any pair of i.i.d random permutations of size greater than $n_1$ with distribution invariant under conjugation. More generally, in the case where the laws of the two permutations are not necessarily the same, we give a lower bound for the expectation. In particular, we prove that if one of the permutations is invariant under conjugation and with a good control of the expectation of the number of its cycles, the limiting fluctuations of the length of the longest common subsequence are of Tracy-Widom type. This result holds independently of the law of the second permutation.
We present some Markovian approaches to prove universality results for some functions on the symmetric group. Some of those statistics are already studied in [Kammoun, 2018[Kammoun, , 2020 but not the general case. We prove, in particular, that the number of occurrences of a vincular patterns satisfies a CLT for conjugation invariant random permutations with few cycles and we improve the results already known for the longest increasing subsequence. The second approach is a suggestion of a generalization to other random permutations and other sets having a similar structure than the symmetric group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.