This paper demonstrates the implementation and tests the performance of a low angular speed sensor for rotary machinery based on a microelectromechanical system gyroscope. First, an experimental test setup is presented that features a top-of-the-line optical absolute angle encoder as a reference for characterizing the proposed sensor in a controlled environment chamber. A prototype of the proposed sensor has been designed and implemented with its architecture and hardware design described in detail. For the experimental purposes, a wireless synchronization scheme between the reference and the gyroscopic sensor is also discussed. The experimental measurement has taken place to benchmark the performance of the realized sensor. The experimental data have been processed and analyzed, and the results have been presented. The gyroscopic sensor has shown satisfactory results. The sensor has an accuracy of 0.06°/s, standard deviation of 0.45°/s, and hysteresis of 0.08°/s. Index Terms-Angular speed, gyroscope, microelectromechanical devices, rate sensor rotating bodies, rotating machine measurements.
0018-9456
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.